Publications by authors named "Fu-Kang Zhang"

Background: Unicompartmental knee arthroplasty (UKA) is an effective treatment method for knee osteoarthritis. With the development and implementation of enhanced recovery after surgery, UKA is now increasingly performed in outpatient surgical centers. However, there is ongoing debate regarding the safety and effectiveness of performing UKA in outpatient settings.

View Article and Find Full Text PDF

Background: Epidemiological evidence suggests that there is an association between rheumatoid arthritis (RA) and Alzheimer's disease (AD). However, the causal relationship between RA and AD remains unclear. Therefore, this study aimed to investigate the causal relationship between RA and AD.

View Article and Find Full Text PDF

To explore whether experiencing inflammatory pain has an impact upon intracortical synaptic organization, the planar multi-electrode array (MEA) technique and 2-dimensional current source density (2D-CSD) imaging were used in slice preparations of the anterior cingulate cortex (ACC) from rats. Synaptic activity across different layers of the ACC was evoked by deep layer stimulation through one electrode. The layer-localization of both local field potentials (LFPs) and the spread of current sink calculated by 2D-CSD analysis was characterized pharmacologically.

View Article and Find Full Text PDF

Background: Proneurotrophins such as the precursor of nerve growth factor (proNGF) and the precursor of brain-derived neurotrophic factor (proBDNF) interacted with sortilin and p75(NTR) to form a complex capable of activating an apoptotic signaling. We found that the expression of p75(NTR) and sortilin was increased in ischemic retina induced by elevated intraocular pressure (IOP), but the protein expression changes of proNGF and proBDNF in the same situation were not clear. This study aimed to ascertain the protein expression changes of proNGF and proBDNF in ischemic retina induced by elevated IOP.

View Article and Find Full Text PDF

Chronic motor cortex (MCx) stimulation (MCS) is an effective approach for patients with chronic, intractable neuropathic pain. However, the underlying neural mechanisms are less known. Combining an in vivo simultaneous multisite recording technique with a video-based behavioral tracker, simultaneous neuronal ensemble activities of the MCx and behavioral responses to noxious heat stimuli applied to bilateral hindpaw pads under naïve and inflammatory pain state were studied in freely behaving rats receiving prior implantation of microwire multielectrode array (2 × 4).

View Article and Find Full Text PDF

It is known that chronic pain affects various higher brain functions including perception, emotion, cognition, and memory. However, few studies have been performed to examine pain-induced synaptic plastic changes in the hippocampal formation (HF), an important region subserving affective-motivational component of pain. Our previous study has revealed a strong impact of peripheral persistent nociception on synaptic connection, transmission and function in the HF of rats, in both temporal and spatial domains, by using a newly developed MED64 multichannel recording system.

View Article and Find Full Text PDF

Background: Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy.

View Article and Find Full Text PDF

Although the postsynaptic events responsible for development of pathological pain have been intensively studied, the relative contribution of presynaptic neurotransmitters to the whole process remains less elucidated. In the present investigation, we sought to measure temporal changes in spinal release of both excitatory amino acids (EAAs, glutamate and aspartate) and inhibitory amino acids (IAAs, glycine, ?-aminobutyric acid and taurine) in response to peripheral inflammatory pain state. The results showed that following peripheral chemical insult induced by subcutaneous bee venom (BV) injection, there was an initial, parallel increase in spinal release of both EAAs and IAAs, however, the balance between them was gradually disrupted when pain persisted longer, with EAAs remaining at higher level but IAAs at a level below the baseline.

View Article and Find Full Text PDF

The primary somatosensory cortex (S1 area) is one of the key brain structures for central processing of somatic noxious information to produce pain perception. However, so far, the spatiotemporal characteristics of neuronal activities associated with peripheral persistent nociception have rarely been studied. In the present report, we used c-Fos as a neuronal marker to analyze spatial and temporal patterns of pain-related neuronal activities within the S1 area of rats subjecting to subcutaneous (s.

View Article and Find Full Text PDF

The present study was undertaken to investigate whether isoforms of c-Jun N-terminal kinase (JNK 46 kDa and 54 kDa), one component of the mitogen-activated protein kinase (MAPK) family, might show region-related differential activation patterns in both naïve and pain-experiencing rats. In naïve rats, no significant difference was observed in total expression level of the two JNK isoforms between spinal cord and primary somatosensory cortex (S1 area). However, phosphorylated JNK 46 kDa was normally expressed in the S1 area, but not in the spinal cord, while neither of the two structures contained phosphorylated JNK 54 kDa.

View Article and Find Full Text PDF