In eukaryotic cells, transcriptional regulation of gene expression is usually achieved by cooperative transcription factors (TFs). Therefore, knowing cooperative TFs is the first step toward uncovering the molecular mechanisms of gene expression regulation. Many algorithms based on different rationales have been proposed to predict cooperative TF pairs in yeast.
View Article and Find Full Text PDFIn eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes.
View Article and Find Full Text PDFDatabase (Oxford)
January 2017
In eukaryotic cells, transcriptional regulation of gene expression is usually accomplished by cooperative Transcription Factors (TFs). Therefore, knowing cooperative TFs is helpful for uncovering the mechanisms of transcriptional regulation. In yeast, many cooperative TF pairs have been predicted by various algorithms in the literature.
View Article and Find Full Text PDFBackground: Transcriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative transcription factors (TFs). Computational identification of cooperative TF pairs has become a hot research topic and many algorithms have been proposed in the literature. A typical algorithm for predicting cooperative TF pairs has two steps.
View Article and Find Full Text PDFBackground: Biologists are puzzled by the extremely low percentage (3%) of the binding targets of a yeast transcription factor (TF) affected when the TF is knocked out, a phenomenon observed by comparing the TF binding dataset and TF knockout effect dataset.
Results: This study gives a plausible biological explanation of this counterintuitive phenomenon. Our analyses find that TFs with high functional redundancy show significantly lower percentage than do TFs with low functional redundancy.
Background: Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores.
View Article and Find Full Text PDFBackground: Transcriptional regulation of gene expression is usually accomplished by multiple interactive transcription factors (TFs). Therefore, it is crucial to understand the precise cooperative interactions among TFs. Various kinds of experimental data including ChIP-chip, TF binding site (TFBS), gene expression, TF knockout and protein-protein interaction data have been used to identify cooperative TF pairs in existing methods.
View Article and Find Full Text PDFBackground: Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast.
View Article and Find Full Text PDFTranscription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome.
View Article and Find Full Text PDF