Appl Microbiol Biotechnol
May 2023
Botulinum neurotoxins (BoNTs) are the most toxic known proteins. Naturally occurring botulism in humans is caused by botulinum serotypes A, B, E, and F. Vaccination is an effective strategy to prevent botulism.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are highly toxic proteins that mediate their effects by binding to neuronal receptors and block the neutralizing ability of therapeutic antibodies. Vaccination is currently the most effective strategy to prevent botulism. In this study, a series of recombinant functional domain antigens of BoNT/A were prepared and identified, and their immunoprotective efficacies were explored and compared.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are among the most toxic proteins. Vaccination is an effective strategy to prevent botulism. To generate a vaccine suitable for human use, a recombinant non-His-tagged isoform of the Hc domain of botulinum neurotoxin serotype E (rEHc) was expressed in and purified by sequential chromatography.
View Article and Find Full Text PDFHypoxia inducible factor-1α facilitates cellular adaptation to hypoxic conditions. Hence its tight regulation is crucial in hypoxia related diseases such as cerebral ischemia. Changes in hypoxia inducible factor-1α expression upon cerebral ischemia influence the expression of its downstream genes which eventually determines the extent of cellular damage.
View Article and Find Full Text PDFMicroRNAs have been identified as key regulators of gene expression and thus their potential in disease diagnostics, prognosis and therapy is being actively pursued. Deregulation of microRNAs in cerebral pathogenesis has been reported to a limited extent in both animal models and human. Due to the complexity of the pathology, identifying stroke specific microRNAs has been a challenge.
View Article and Find Full Text PDFBackground: Hyperbaric oxygen preconditioning (HBO) is a new method of ischemia preconditioning. In this study, we examined its effects on skin flap survival and the mechanisms involved.
Methods: Thirty-six rats were divided into three groups: HBO preconditioning, control, and sham groups.
To date, miRNA expression studies on cerebral ischemia in both human and animal models have focused mainly on acute phase of ischemic stroke. In this study, we present the roles played by microRNAs in the spontaneous recovery phases in cerebral ischemia using rodent stroke models. Brain tissues were harvested at different reperfusion time points ranging from 0-168 hrs after middle cerebral artery occlusion using homologous emboli.
View Article and Find Full Text PDF