Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice.
View Article and Find Full Text PDFDendronized polymers (DPs) consist of a linear polymeric backbone with dendritic side chains. Fine-tuning of the functional groups in the side chains enriches the structural versatility of the DPs and imparts a variety of novel physical properties. Herein, the first on-surface synthesis of DPs is achieved via the postfunctionalization of polymers on Au(111), in which the surface-confinement-induced planar conformation and chiral configurations were unambiguously characterized.
View Article and Find Full Text PDF[3]Radialenes are the smallest carbocyclic structures with unusual topologies and cross-conjugated π-electronic structures. Here, we report a novel [1+1+1] cycloaddition reaction for the synthesis of aza[3]radialenes on the Ag(111) surface, where the steric hindrance of the chlorine substituents guides the selective and orientational assembling of the isocyanide precursors. By combining scanning tunneling microscopy, non-contact atomic force microscopy, and time-of-flight secondary ion mass spectrometry, we determined the atomic structure of the produced aza[3]radialenes.
View Article and Find Full Text PDF