Publications by authors named "Fu-Chuan Hsieh"

Background: Constitutive activation of signal transducer and activator of transcription 3 (Stat3) signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer.

View Article and Find Full Text PDF

Background: Stat3 has been classified as a proto-oncogene and constitutive Stat3 signaling appears to be involved in oncogenesis of human cancers. However, whether constitutive Stat3 signaling plays a role in the survival and growth of osteosarcomas, rhabdomyosarcomas, and soft-tissue sarcomas is still unclear.

Methods: To examine whether Stat3 is activated in osteosarcomas, rhabdomyosarcomas and other soft-tissue sarcomas we analyzed sarcoma tissue microarray slides and sarcoma cell lines using immunohistochemistry and Western blot analysis, respectively, with a phospho-specific Stat3 antibody.

View Article and Find Full Text PDF

Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, which includes two major subtypes, alveolar and embryonal rhabdomyosarcoma. The mechanism of its oncogenesis is largely unknown. However, the oncogenic process of rhabdomyosarcoma involves multi-stages of signaling protein dysregulation characterized by prolonged activation of tyrosine and serine/threonine kinases.

View Article and Find Full Text PDF

Stat3 plays important roles in many biological phenomena including cell survival, growth, proliferation, differentiation and cancer malignancies. As Stat3 emerges as a new therapeutic target for treatment of cancers in which the Stat3 is constitutively activated, the overall evaluation of basal expression of Stat3 and phosphorylated Stat3 at tyrosine residue 705 in human tissues would be very important and informative. We took a pilot study to examine the expression patterns of total Stat3 and phosphorylated Stat3 protein (p-Stat3) using immunohistochemistry in 47 different adult normal human tissues of 10 organ systems.

View Article and Find Full Text PDF

The constitutive activation of signal transducer and activator of transcription 3 (Stat3) is frequently detected in breast cancer tissues and cell lines. Stat3 has been classified as a proto-oncogene, because an activated form of Stat3 can mediate oncogenic transformation in cultured cells and tumor formation in nude mice. Since Stat3 may play an important role in breast cancer, it is of interest to investigate the expression of phosphorylated Stat3, an activated form of Stat3, and its downstream mediators specifically in breast cancer, and to explore the possible mechanisms of Stat3 signaling pathway in oncogenesis of breast cancer.

View Article and Find Full Text PDF