Organic synaptic transistors are a promising technology for advanced electronic devices with simultaneous computing and memory functions and for the application of artificial neural networks. In this study, the neuromorphic electrical characteristics of organic synaptic electrolyte-gated transistors are correlated with the microstructural and interfacial properties of the active layers. This is accomplished by utilizing a semiconducting/insulating polyblend-based pseudobilayer with embedded source and drain electrodes, referred to as PB-ESD architecture.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
Organic thin film transistors (OTFTs) are a promising technology for the application of photosensors in smart wearable devices. Light-induced electrical behavior of OTFTs is explored to achieve diverse functional requirements. In most studies, OTFTs show an increased drain current () under light irradiation.
View Article and Find Full Text PDFDual-gate organic thin-film transistors (DG-OTFTs) with enhanced functionality, including large current enhancement behavior, highly efficient threshold voltage controllability, and self-contained dual-mode logic gate features, are reported. These DG-OTFTs are based on a semiconducting/insulating polyblend-based active layer with asymmetric top and bottom charge modulation layers (atb-CMLs). The atb-CMLs are automatically generated through the preparation of multilayer stacks of phase-separated semiconducting poly(3-hexylthiophene) (P3HT):insulating poly(methylmethacrylate) (PMMA) polyblend layer, poly(vinylidene fluoride) (PVDF) layer, and cross-linked-poly(4-vinylphenol) (cPVP) layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2015
Conjugated polymer-fullerene-based bulk-heterojunction (BHJ) organic solar cells (OSCs) have attracted tremendous attention over the past two decades because of their potential to develop low-cost and easy methods to produce energy from light. The complicated microstructure and morphology with randomly organized architecture of these polymer-fullerene-based active layers (ALs) is a key factor that limits photovoltaic performance. In this study, a binary-solvent annealing (BSA) approach was established to improve the poly(3-hexylthiophene):indene-C60 bisadduct-based AL for efficient BHJ-type OSCs by varying the second solvents with different boiling points (BP).
View Article and Find Full Text PDFWe demonstrate semiconducting polymer-based thin-film transistors (PTFTs) with fast switching performance and an uncommon nondecaying feature. These PTFTs based on widely studied poly(3-hexylthiophene) are developed by incorporating the insulating polymer into the active channel and subjecting the compound to specific, spontaneous multiple-scale phase separation (MSPS). An in-depth study is conducted on the interfacial and phase-separated microstructure of the semiconducting/insulating blending active layer and its effect on the electrical characteristics of PTFTs.
View Article and Find Full Text PDFIn the optimization of organic solar cells (OSCs), a key problem lies in the maximization of charge carriers from the active layer to the electrodes. Hence, this study focused on the interfacial molecular configurations in efficient OSC charge extraction by theoretical investigations and experiments, including small molecule-based bilayer-heterojunction (sm-BLHJ) and polymer-based bulk-heterojunction (p-BHJ) OSCs. We first examined a well-defined sm-BLHJ model system of OSC composed of p-type pentacene, an n-type perylene derivative, and a nanogroove-structured poly(3,4-ethylenedioxythiophene) (NS-PEDOT) hole extraction layer.
View Article and Find Full Text PDFElectron transport (ET) properties of a series of fluorinated copper-phthalocyanine (F(16)CuPc) thin films, which were deposited at different substrate temperatures (T(sub)) ranging from 30 to 150 degrees C, have been investigated by quantum mechanical calculations of the reorganization energy (lambda(reorg)), X-ray diffraction (XRD), atomic force microscopy (AFM), and microRaman spectroscopy. Density functional theory calculations were used to predict the vibrational frequencies, normal mode displacement vectors, and electron-vibrational lambda(reorg) for the F(16)CuPc molecule. The electron mobilities (mu(e)) of F(16)CuPc thin films are strongly dependent on the T(sub), and the value of mu(e) increases with increasing T(sub) from 30 to 120 degrees C, at which point it reaches its maximum value.
View Article and Find Full Text PDF