Publications by authors named "Fu Zongming"

Cell line development for production of vaccine antigens or therapeutic proteins typically involves transfection, selection, and enrichment for high-expressing cells. Enrichment methods include minipool enrichment, antibody-based enrichment, and enrichment based on co-expressed fluorescent biosensor proteins. However, these methods have limitations regarding labor and cost intensity, the generation of antibodies and assurance of their viral safety, and potential expression-interference or signal-saturation of the co-expressed fluorescent protein.

View Article and Find Full Text PDF

Alterations of serine/threonine phosphorylation of the cardiac proteome are a hallmark of heart failure. However, the contribution of tyrosine phosphorylation (pTyr) to the pathogenesis of cardiac hypertrophy remains unclear. We use global mapping to discover and quantify site-specific pTyr in two cardiac hypertrophic mouse models, i.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by sustained elevations of pulmonary artery pressure. To date, we lack circulating, diagnostic, and prognostic markers that correlate to clinical and functional parameters. In this study, we performed mass spectrometry-based proteomics analysis to identify circulating biomarkers of PAH.

View Article and Find Full Text PDF

Purpose: Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes stroke and silent cerebral infarct (SCI). Our aim was to identify markers of brain injury in SCD.

Experimental Design: Plasma proteomes were analyzed using a sequential separation approach of hemoglobin (Hb) and top abundant plasma protein depletion, followed by reverse phase separation of intact proteins, trypsin digestion, and tandem mass spectrometry.

View Article and Find Full Text PDF

Mammalian cell line generation typically includes stable pool generation, single cell cloning and several rounds of clone selection based on cell growth, productivity and product quality criteria. Individual clone expansion and phenotype-based ranking is performed initially for hundreds or thousands of mini-scale cultures, representing the major operational challenge during cell line development. Automated cell culture and analytics systems have been developed to enable high complexity clone selection workflows; while ensuring traceability, safety, and quality of cell lines intended for biopharmaceutical applications.

View Article and Find Full Text PDF

Backgound: The inability to detect premature atherosclerosis significantly hinders implementation of personalized therapy to prevent coronary heart disease. A comprehensive understanding of arterial protein networks and how they change in early atherosclerosis could identify new biomarkers for disease detection and improved therapeutic targets.

Methods: Here we describe the human arterial proteome and proteomic features strongly associated with early atherosclerosis based on mass spectrometry analysis of coronary artery and aortic specimens from 100 autopsied young adults (200 arterial specimens).

View Article and Find Full Text PDF

Rationale: GSK-3β (glycogen synthase kinase 3β) is a multifunctional and constitutively active kinase known to regulate a myriad of cellular processes. The primary mechanism to regulate its function is through phosphorylation-dependent inhibition at serine-9 residue. Emerging evidence indicates that there may be alternative mechanisms that control GSK-3β for certain functions.

View Article and Find Full Text PDF

Priapism is a disorder in which prolonged penile erection persists uncontrollably, potentially leading to tissue damage. Priapism commonly afflicts patient populations with severely low nitric oxide (NO) bioavailability. Because NO is a primary mediator of erection, the molecular mechanisms involved in priapism pathophysiology associated with low NO bioavailability are not well-understood.

View Article and Find Full Text PDF

Factors that contribute to the onset of atherosclerosis may be elucidated by bioinformatic techniques applied to multiple sources of genomic and proteomic data. The results of genome wide association studies, such as the CardioGramPlusC4D study, expression data, such as that available from expression quantitative trait loci (eQTL) databases, along with protein interaction and pathway data available in Ingenuity Pathway Analysis (IPA), constitute a substantial set of data amenable to bioinformatics analysis. This study used bioinformatic analyses of recent genome wide association data to identify a seed set of genes likely associated with atherosclerosis.

View Article and Find Full Text PDF

Rationale: Pulmonary arterial hypertension (PAH) is a fatal disease, and pulmonary microvascular remodeling is an important contributor to PAH development. Therefore, we hypothesized that a circulating angiogenic factor could predict disease severity and survival.

Objectives: We sought to assess the relationship of serum hepatoma-derived growth factor (HDGF) with PAH disease severity and survival.

View Article and Find Full Text PDF

Multiple reaction monitoring (MRM), sometimes referred to as selective reaction monitoring (SRM), is a mass spectrometry method that can target selective peptides for the detection and quantitation of a protein. Compared to traditional ELISA, MRM assays have a number of advantages including ease in multiplexing several proteins in the same assay and independence from the necessity for high-quality, expensive, and at times unreliable antibodies. Furthermore, MRM assays can be developed to quantify multiple proteoforms of a single protein allowing the quantification of allelic expression of a particular sequence polymorphism, protein isoform, as well as determining site occupancy of posttranslational modification(s).

View Article and Find Full Text PDF

The human heart is capable of functioning for decades despite minimal cell turnover or regeneration, suggesting that molecular alterations help sustain heart function with age. However, identification of compensatory remodeling events in the aging heart remains elusive. We present the cardiac proteomes of young and old rhesus monkeys and rats, from which we show that certain age-associated remodeling events within the cardiomyocyte cytoskeleton are highly conserved and beneficial rather than deleterious.

View Article and Find Full Text PDF

Purpose: To investigate the biochemical origin of the amide photon transfer (APT)-weighted hyperintensity in brain tumors.

Procedures: Seven 9 L gliosarcoma-bearing rats were imaged at 4.7 T.

View Article and Find Full Text PDF

Citrullination is a protein PTM of arginine residues catalyzed by peptidylarginine deiminase. Protein citrullination has been detected in the CNS and associated with a number of neurological diseases. However, identifying citrullinated proteins from complex mixtures and pinpointing citrullinated residues have been limited.

View Article and Find Full Text PDF

The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health.

View Article and Find Full Text PDF

Purpose: Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formalin-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics.

Experiment Design: Proteins were extracted from fresh frozen aorta at room temperature (RT). FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure.

View Article and Find Full Text PDF

An accumulation of milk fat globule EGF-8 protein (MFG-E8) occurs within the context of arterial wall inflammatory remodeling during aging, hypertension, diabetes mellitus, or atherosclerosis. MFG-E8 induces VSMC invasion, but whether it affects VSMC proliferation, a salient feature of arterial inflammation, is unknown. Here, we show that in the rat arterial wall in vivo, PCNA and Ki67, markers of cell cycle activation, increase with age between 8 and 30 months.

View Article and Find Full Text PDF

To determine if glial fibrillary acidic protein (GFAP) is associated with brain injury in children with sickle cell disease (SCD), we measured plasma GFAP among cross-sectional groups of unselected children with SCD, subsets of children with SCD and normal brain MRI or MRI evidence of cerebral infarct, healthy pediatric controls, and adults with brain injury. Children with SCD had higher plasma GFAP than healthy pediatric controls (mean concentrations 0.14 ± 0.

View Article and Find Full Text PDF

Purpose: Hemoglobin (Hb) depletion with nickel affinity chromatography has been shown to increase the number of proteins identified in proteomic studies of erythrocytes, but limited data exist on the application of this technique in depletion of Hb from plasma or serum required for clinical biomarker studies. The aim of this study was to explore the potential of using nickel-beads for Hb depletion of plasma.

Experimental Design: Nickel–nitrilotriacetic acid (Ni–NTA) affinity chromatography was used to deplete Hb from hemolyzed plasma samples obtained from children with sickle cell disease (SCD, n=7) and normal human plasma (n=4).

View Article and Find Full Text PDF

Hypoxia-induced mitogenic factor (HIMF) is a newly discovered protein that is up-regulated in murine models of pulmonary arterial hypertension and asthma. Our previous study shows that HIMF is a potent mitogenic, angiogenic, and vasoconstrictive chemokine associated with pulmonary arterial hypertension. Two-dimensional gel electrophoresis was used to investigate downstream molecules in HIMF-induced cell signaling, demonstrating that S100A11, an EF-hand calcium-binding protein, was exclusively altered and was decreased (2.

View Article and Find Full Text PDF

Advancing age induces aortic wall thickening that results from the concerted effects of numerous signaling proteins, many of which have yet to be identified. To search for novel proteins associated with aortic wall thickening, we have performed a comprehensive quantitative proteomic study to analyze aortic proteins from young (8 months) and old (30 months) rats and identified 50 proteins that significantly change in abundance with aging. One novel protein, the milk fat globule protein epidermal growth factor 8 (MFG-E8), increases 2.

View Article and Find Full Text PDF

Proteomics, analogous with genomics, is the analysis of the protein complement present in a cell, organ, or organism at any given time. While the genome provides information about the theoretical status of the cellular proteins, the proteome describes the actual content, which ultimately determines the phenotype. The broad application of proteomic technologies in basic science and clinical medicine has the potential to accelerate our understanding of the molecular mechanisms underlying disease and may facilitate the discovery of new drug targets and diagnostic disease markers.

View Article and Find Full Text PDF

Whether or not there are molecular differences, at the intra- and extracellular level, between aortic dilatation in patients with bicuspid (BAV) and those with a tricuspid aortic valve (TAV) has remained controversial for years. We have performed 2-dimensional gel electrophoresis and mass spectrometry coupled with dephosphorylation and phosphostaining experiments to reveal and define protein alterations and the high abundant structural phosphoproteins in BAV compared to TAV aortic aneurysm samples. 2-D gel patterns showed a high correlation in protein expression between BAV and TAV specimens (n=10).

View Article and Find Full Text PDF