Acquisition of detailed anatomical and molecular knowledge from intact biological samples while preserving their native three-dimensional structure is still a challenging issue for imaging studies aiming to unravel a system's functions. Three-dimensional micro-CT X-ray imaging with a high spatial resolution in minimally perturbed naive non-transparent samples has recently gained increased popularity and broad application in biomedical research. Here, we describe a novel X-ray-based methodology for analysis of () reporter-driven gene expression in an intact murine brain ex vivo by micro-CT.
View Article and Find Full Text PDFThe self-splicing group I introns are removed by an autocatalytic mechanism that involves a series of transesterification reactions. They require RNA binding proteins to act as chaperones to correctly fold the RNA into an active intermediate structure in vivo. Pre-tRNA introns in Bacteria and in higher eukaryote plastids are typical examples of self-splicing group I introns.
View Article and Find Full Text PDFComputational studies predict the simultaneous presence of two and even three introns in certain crenarchaeal tRNA genes. In these multiple-intron-containing pretRNAs, the introns are nested one inside the other and the pretRNA folds into a conformation that is anticipated to allow splicing of the last intron only after splicing the others. A set of operations, each consisting of two cleavages and one ligation, therefore needs to be carried out sequentially.
View Article and Find Full Text PDFThe relationship between enzyme architecture and substrate specificity among archaeal pre-tRNA splicing endonucleases has been investigated more deeply, by using biochemical assays and model building. The enzyme from Archeoglobus fulgidus (AF) is particularly interesting: it cleaves the bulge-helix-bulge target without requiring the mature tRNA domain, but, when the target is a bulge-helix-loop, the mature domain is required. A model of AF based on its electrostatic potential shows three polar patches interacting with the pre-tRNA substrate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2005
Members of the three kingdoms of life contain tRNA genes with introns. The introns in pre-tRNAs of Bacteria are self-splicing, whereas introns in archaeal and eukaryal pre-tRNAs are removed by splicing endonucleases. We have studied the structures of the endonucleases of Archaea and the architecture of the sites recognized in their pre-tRNA substrates.
View Article and Find Full Text PDFWe have detected two paralogs of the tRNA endonuclease gene of Methanocaldococcus jannaschii in the genome of the crenarchaeote Sulfolobus solfataricus. This finding has led to the discovery of a previously unrecognized oligomeric form of the enzyme. The two genes code for two different subunits, both of which are required for cleavage of the pre-tRNA substrate.
View Article and Find Full Text PDFWe have identified, in extracts from Xenopus laevis germinal vesicles, a 5' exonuclease activity that cleaves double-stranded RNA (dsRNA). Features of the 5' ends of dsRNAs determine whether the strands are symmetrically or asymmetrically degraded. The activity hydrolyzes in the 5' to 3' direction, releasing 5'-mononucleotides processively, favoring strands with 5'-monophosphate termini; molecules with capped ends are resistant to digestion.
View Article and Find Full Text PDFEukaryal tRNA splicing endonucleases use the mature domains of pre-tRNAs as their primary recognition elements. However, they can also cleave in a mode that is independent of the mature domain, when substrates are able to form the bulge-helix-bulge structure (BHB), which is cleaved by archaeal tRNA endonucleases. We present evidence that the eukaryal enzymes cleave their substrates after forming a structure that resembles the BHB.
View Article and Find Full Text PDFWe report the evolution of an RNA aptamer to change its binding specificity. RNA aptamers that bind the free amino acid tyrosine were in vitro selected from a degenerate pool derived from a previously selected dopamine aptamer. Three independent sequences bind tyrosine in solution, the winner of the selection binding with a dissociation constant of 35 microM.
View Article and Find Full Text PDFAccuracy in transfer RNA (tRNA) splicing is essential for the formation of functional tRNAs, and hence for gene expression, in both Eukaryotes and Archaea. The specificity for recognition of the tRNA precursor (pre-tRNA) resides in the endonuclease, which removes the intron by making two independent endonucleolytic cleavages. Although the eukaryal and archaeal enzymes appear to use different features of pre-tRNAs to determine the sites of cleavage, analysis of hybrid pre-tRNA substrates containing eukaryal and archaeal sequences, described here, reveals that the eukaryal enzyme retains the ability to use the archaeal recognition signals.
View Article and Find Full Text PDFRNA aptamers that specifically bind dopamine have been isolated by in vitro selection from a pool of 3.4 x 10(14) different RNA molecules. One aptamer (dopa2), which dominated the selected pool, has been characterized and binds to the dopamine affinity column with a dissociation constant of 2.
View Article and Find Full Text PDFIn addition to the well-known internal promoter elements of tRNA genes, 5' flanking sequences can also influence the efficiency of transcription by Saccharomyces cerevisiae extracts in vitro. A consensus sequence of yeast tRNA genes in the vicinity of the transcriptional start site can be derived. To determine whether the activity of this region can be attributed to particular sequence features we studied in vitro mutants of the start site region.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 1995
Using precursor tRNA molecules to study RNA-protein interactions, we have identified an RNA motif recognized by eukaryotic RNase P (EC 3.1.26.
View Article and Find Full Text PDFInvestigation of the mechanism of cleavage site selection by Xenopus RNAase P reveals that the acceptor stem, a 7 bp helix common to all tRNA precursors, is required for cleavage. We propose that Xenopus RNAase P recognizes conserved features of the mature tRNA and that the cleavage site is selected by measuring the length of the acceptor stem. In support of this, we demonstrate that insertion of 2 bp in the acceptor stem of yeast pre-tRNA(3Leu) relocates the cleavage site 2 bases 3' to the original one.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 1987
We demonstrate that, when the yeast tRNA(3Leu) gene is stretched so that the distance between the two portions of the intragenic promoter is increased to 365 base pairs, the A and B blocks remain functional. Mutations in the A block, which show a weak phenotype when inserted in the wild type, exert a dramatic effect when inserted into the stretched gene. Experiments with extensively purified transcription factor tau indicate that the tau B-B block interaction is not influenced by A-B distance; only the ability of tau A to interact with A block sequences is affected, possibly because of the additional free-energy cost of forming a large loop of the intervening DNA.
View Article and Find Full Text PDFIn Drosophila, the vast majority of mRNAs that are polysome associated during oogenesis are also polysome associated during early embryogenesis. We have previously identified an exceptional mRNA that appears to be depleted from early-embryo polysomes [Fruscoloni, P., Al-Atia, G.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 1983
Polysomal and postpolysomal mRNAs were prepared from Drosophila egg chambers or embryos of different developmental stages. Cell-free translation of these mRNAs followed by two-dimensional gel electrophoresis of the products indicated the presence of a specific mRNA that appears to be translated (polysome-associated) during oogenesis. This mRNA, designated T1 mRNA, is selectively excluded from polysomes in 3-hr- and 5-hr-old embryos and is again translated in 18-hr-old embryos.
View Article and Find Full Text PDFA procedure suitable for en masse preparation of germinal vesicles (GV) from X.laevis oocytes (Scalenghe et al., 1978) has been adapted for studies of transcription.
View Article and Find Full Text PDF