Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy.
View Article and Find Full Text PDFTo improve their aqueous solubility characteristics, water-solubilizing groups were added to some antiproliferative, rigidin-inspired 7-deazahypoxanthine frameworks after molecular modeling seemed to indicate that structural modifications on the C7 and/or C8 phenyl groups would be beneficial. To this end, two sets of 7-deazahypoxanthines were synthesized by way of a multicomponent reaction approach. It was subsequently determined that their antiproliferative activity against HeLa cells was retained for those derivatives with a glycol ether at the 4'-position of the C8 aryl ring system, while also significantly improving their solubility behavior.
View Article and Find Full Text PDFThe high power-conversion efficiencies of hybrid perovskite solar cells encourage many researchers. However, their limited photostability represents a serious obstacle to the commercialization of this promising technology. Herein, we present an efficient method for improving the intrinsic photostability of a series of commonly used perovskite material formulations such as MAPbI, FAPbI, CsFAPbI, and CsMAFAPbI through modification with octenidine dihydroiodide (), which is a widely used antibacterial drug with two substituted pyridyl groups and two cationic centers in its molecular framework.
View Article and Find Full Text PDFPerovskite solar cells represent the most attractive emerging photovoltaic technology, but their practical implementation is limited by solar cell devices' low levels of operational stability. The electric field represents one of the key stress factors leading to the fast degradation of perovskite solar cells. To mitigate this issue, one must gain a deep mechanistic understanding of the perovskite aging pathways associated with the action of the electric field.
View Article and Find Full Text PDFWound Repair Regen
November 2023
The secreted frizzled-related proteins (sfrp) and smoothened (smo) genes and their possible role in the regeneration of internal organs in the holothurian Eupentacta fraudatrix were studied. In this species, two sfrp genes were identified: sfrp1/2/5, sfrp3/4 and one smo gene. Their expression was analysed during regeneration of the aquapharyngeal bulb (AB) and intestine, and these genes were knock down by RNA interference.
View Article and Find Full Text PDFBronchial asthma (BA) is a disease that still lacks an exhaustive treatment protocol. In this regard, the global medical community pays special attention to the genetic prerequisites for the occurrence of this disease. Therefore, the search for the genetic polymorphisms underlying bronchial asthma has expanded considerably.
View Article and Find Full Text PDFInverted perovskite solar cells with a p-i-n configuration have attracted considerable attention from the research community because of their simple design, insignificant hysteresis, improved operational stability, and low-temperature fabrication technology. However, this type of device is still lagging behind the classical n-i-p perovskite solar cells in terms of its power conversion efficiency. The performance of p-i-n perovskite solar cells can be increased using appropriate charge transport and buffer interlayers inserted between the main electron transport layer and top metal electrode.
View Article and Find Full Text PDFThere are increasing findings of the bivalve transmissible neoplasia derived from the Pacific mussel (BTN) in populations of different species worldwide. The Subarctic is an area where this disease has not yet been sought despite the fact that spp. are widespread there, and itself is a boreal species.
View Article and Find Full Text PDFHerein, we show that thin films of MAPbI, FAPbI, (CsMA)PbI, and (CsMAFA)PbI, where MA and FA are methylammonium and formamidinium cations, respectively, tolerate ultrahigh doses of γ rays approaching 10 MGy without significant changes in their absorption spectra. However, among the studied materials, FAPbI was the only one that did not form metallic lead due to its extreme radiation hardness. Infrared near-field optical microscopy revealed the radiation-induced depletion of organic cations from the grains of MAPbI and their accumulation at the grain boundaries, whereas FAPbI on the contrary lost FA cations from the grain boundaries.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2022
Infectious diseases caused by various nosocomial microorganisms affect worldwide both immunocompromised and relatively healthy persons. Bacteria and fungi have different tools to evade antimicrobials, such as hydrolysis damaging the drug, efflux systems, and the formation of biofilm that significantly complicates the treatment of the infection. Here, we show that myrtenol potentiates the antimicrobial and biofilm-preventing activity of conventional drugs against and mono- and dual-species cultures.
View Article and Find Full Text PDFFor the first time, monoterpene trifluoromethylated β-hydroxy-benzyl--oximes were synthesized in 81-95% yields by nucleophilic addition of the Ruppert-Prakash reagent (TMSCF) to the corresponding β-keto-benzyl--oximes based on (+)-nopinone, (-)-verbanone and (+)-camphoroquinone. Trifluoromethylation has been determined to entirely proceed chemo- and stereoselective at the C=O rather than C=N bond. Trifluoromethylated benzyl--oximes were reduced to the corresponding α-trifluoromethyl-β-amino alcohols in 82-88% yields.
View Article and Find Full Text PDFBioengineering (Basel)
September 2022
Extracellular vesicles (EVs) are highly promising as drug delivery vehicles due to their nanoscale size, stability and biocompatibility. EVs possess natural targeting abilities and are known to traverse long distances to reach their target cells. This long-range organotropism and the ability to penetrate hard-to-reach tissues, including the brain, have sparked interest in using EVs for the targeted delivery of pharmaceuticals.
View Article and Find Full Text PDFThis article extends the findings of our previous research "Preliminary reconstruction of climate changes and vegetation cover inferred from pollen study of the arctic lake bottom sediments from the southwestern part of the Yamal Peninsula" (G.R. Nigamatzyanova, N.
View Article and Find Full Text PDFMelatonin is a human neurotransmitter and plant signalling metabolite that perceives and directs plant metabolism. The mechanisms of melatonin action in plants remain undefined. We hypothesized that roots have a melatonin-specific receptor and/or transporter that can respond to melatonin-mediating pharmaceuticals.
View Article and Find Full Text PDFPhoto-switchable organic field-effect transistors (OFETs) represent an important platform for designing memory devices for a diverse array of products including security (brand-protection, copy-protection, keyless entry, etc.), credit cards, tickets, and multiple wearable organic electronics applications. Herein, we present a new concept by introducing self-assembled monolayers of donor-acceptor porphyrin-fullerene dyads as light-responsive triggers modulating the electrical characteristics of OFETs and thus pave the way to the development of advanced nonvolatile optical memory.
View Article and Find Full Text PDFHerein, we report the nanoscale visualization of the photochemical degradation dynamics of MAPbI (MA = CHNH) using infrared scattering scanning near-field microscopy (IR s-SNOM) combined with a series of complementary analytical techniques such as UV-vis and FTIR-spectroscopy, XRD, and XPS. Light exposure of the MAPbI films resulted in a gradual loss of MA cations starting from the grain boundaries at the film surface and slowly progressing toward the center of the grains and deeper into the bulk perovskite phase. The binary lead iodide PbI was found to be the major perovskite photochemical degradation product under the experimental conditions used.
View Article and Find Full Text PDFPlatelet aggregation causes various diseases and therefore challenges the development of novel antiaggregatory drugs. In this study, we report the possible mechanism of platelet aggregation suppression by newly synthesized myrtenol-derived monoterpenoids carrying different heteroatoms (sulphur, oxygen, or nitrogen). Despite all tested compounds suppressed the platelet aggregation in vitro, the most significant effect was observed for the S-containing compounds.
View Article and Find Full Text PDFChiral γ-ketothiols, thioacetates, thiobenzoate, disulfides, sulfones, thiosulfonates, and sulfonic acids were obtained from β-pinene for the first time. New compounds open up prospects for the synthesis of other polyfunctional compounds combining a biologically active pinane fragment with various pharmacophore groups. It was shown that the syntheses of sulfanyl and sulfonyl derivatives based on 2-norpinanone are characterized by high stereoselectivity in comparison with similar reactions of pinocarvone.
View Article and Find Full Text PDFWe present the presence/absence species list (Table 1) of rotifer, cladoceran, and copepod (Calanoida, Harpacticoida, and Cyclopoida) fauna from seven Arctic regions of Russia (the Kola Peninsula, the Pechora River Delta, the Bolshezemelskaya tundra, the Polar Ural, the Putorana Plateau, the Lena River Delta, and the Indigirka River Basin) based on our own and literature data. Our own records were obtained by analyzing samples of zooplankton, meiobenthos, and two cores of bottom sediments (from the Kola Peninsula and the Bolshezemelskaya tundra lakes) that we collected once in July or August in 1992, 1995-2017. To supplement the list, we used relevant literature with periods of research from the 1960s to the 2010s.
View Article and Find Full Text PDFRegardless of the impressive photovoltaic performances demonstrated for lead halide perovskite solar cells, their practical implementation is severely impeded by the low device stability. Complex lead halides are sensitive to both light and heat, which are unavoidable under realistic solar cell operational conditions. Suppressing these intrinsic degradation pathways requires a thorough understanding of their mechanistic aspects.
View Article and Find Full Text PDFMaterials (Basel)
January 2021
The structure of the CoMnAltype Heusler alloy in the form of a melt-spun ribbon was studied by electron microscopy, electron back-scattered diffraction (EBSD), and X-ray diffraction. The melt-spun ribbon consists of a homogeneous single-phase disordered Heusler alloy at the wheel side of the ribbon and an inhomogeneous single-phase alloy, formed by cellular or dendritic growth, at the free surface of the ribbon. Cellular growth causes the formation of an inhomogeneous distribution of the elemental constituents, with a higher Co and Al concentration in the centre of the cells or dendritic arms and a higher concentration of Mn at the cell boundaries.
View Article and Find Full Text PDFAll-inorganic lead halide perovskites, for example, CsPbI, are becoming more attractive for applications as light absorbers in perovskite solar cells because of higher thermal and photochemical stability as compared to their hybrid analogues. However, a specific drawback of the CsPbI absorber consists of the rapid phase transition from black to yellow nonphotoactive phase at low temperatures (e.g.
View Article and Find Full Text PDFHybrid perovskite solar cells attract a great deal of attention due to the feasibility of their low-cost production and their demonstration of impressive power conversion efficiencies (PCEs) exceeding 25%. However, the insufficient intrinsic stability of lead halides under light soaking and thermal stress impedes practical implementation of this technology. Herein, we show that the photothermal aging of a widely used perovskite light absorber such as MAPbI can be suppressed significantly by using polyvinylcarbazole (PVC) as a stabilizing agent.
View Article and Find Full Text PDFFour novel halobismuthate(iii) complexes with alkyl viologen cations: (R2Viol)2[Bi2X10] (R = n-butyl, n-pentyl, X = Cl, Br) have been synthesized. Both chloride complexes revealed photochromic behavior and were successfully utilized for the fabrication of OFET-based memory devices with high switching coefficients and good write-read-erase cycling stability.
View Article and Find Full Text PDF