In this study, an integrated approach combining UHPLC-HRMS, H NMR spectroscopy, and sensory analysis unveiled the unique lipid fingerprint of long-ripened Protected Designation of Origin (PDO) Coppa Piacentina. Lipidomic profiling revealed significant alterations in lipid classes, including triacylglycerols, sphingolipids, and their oxidation products, which likely contribute to the distinctive flavor, texture, and nutritional properties of this traditional Italian product. UHPLC-HRMS analysis identified various lipid species, highlighting dynamic changes occurring throughout the 240-day ripening process.
View Article and Find Full Text PDFAn estimate of the environmental impact of dairy farms in Northern Italy producing milk for hard cheese (protected designation of origin) has been obtained through a comprehensive life cycle assessment. The estimate focused on climate change (CC) and photochemical ozone creation potential (POCP) indicators, which were evaluated according to the Intergovernmental Panel on Climate Change (IPCC) guidelines and interpreted with the aid of the feeds' composition evaluated using near-infrared reflectance spectroscopy (Foss NIR-System 5000) as well as with a diet evaluation according to the NRC (National Research Council) or the CNCPS (Cornell Net Carbohydrate and Protein System) nutrient requirement modeling. Herds were classified into high-, mid-, and low-performing based on the daily milk yield per cow.
View Article and Find Full Text PDFCoppa Piacentina is an Italian protected designation of origin (PDO) dry-cured product obtained from the muscle of pork neck and ripened for at least six months. Metabolomics- and volatilomics-based strategies, combined with a chemical characterization of free amino acids were applied to identify biomarkers of long-ripened Coppa Piacentina PDO. Long ripening induced a significantly increase of total free amino acids, mainly represented by glutamic acid, involved in the umami taste perception.
View Article and Find Full Text PDFThe environmental impacts of the dairy industry, particularly global warming, are heavily influenced by milk production. Thus, there is an urgent need for farm-level actions and opportunities for improvement, implying mitigation strategies. The aim of this paper is to investigate five possible mitigation actions at the dairy farm and which one the farmers were willing to adopt: management and distribution of livestock manure and fertilizers, anaerobic manure treatment, optimization of the herd composition, feed quality, and heat recovery.
View Article and Find Full Text PDFDedifferentiation is the reversion of mature cells to a stem cell-like fate, whereby gene expression programs are altered and genes associated with multipotency are (re)expressed. Misexpression of multipotency factors and pathways causes the formation of ectopic neural stem cells (NSCs). Whether dedifferentiated NSCs faithfully produce the correct number and types of progeny, or undergo timely terminal differentiation, has not been assessed.
View Article and Find Full Text PDFThere is a growing awareness that fostering the transition toward plant-based diets with reduced meat consumption levels is essential to alleviating the detrimental impacts of the food system on the planet and to improving human health and animal welfare. The reduction in average meat intake may be reached via many possible ways, one possibility being the increased consumption of plant-based meat alternatives (PBMAs). For this reason, in recent years, hundreds of products have been launched on the market with sensory attributes (i.
View Article and Find Full Text PDFCachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1).
View Article and Find Full Text PDFThe final size and function of the adult central nervous system (CNS) are determined by neuronal lineages generated by neural stem cells (NSCs) in the developing brain. In Drosophila, NSCs called neuroblasts (NBs) reside within a specialised microenvironment called the glial niche. Here, we explore non-autonomous glial regulation of NB proliferation.
View Article and Find Full Text PDFStudies in model organisms have demonstrated that extensive communication occurs between distant organs both during development and in diseases such as cancer. Organs communicate with each other to coordinate growth and reach the correct size, while the fate of tumor cells depend on the outcome of their interaction with the immune system and peripheral tissues. In this review, we outline recent studies in Drosophila, which have enabled an improved understanding of the complex crosstalk between organs in the context of both organismal and tumor growth.
View Article and Find Full Text PDFThe utilization of animal donors of rumen fluid for laboratory experiments can raise ethical concerns, and alternatives to the collection of rumen fluids from live animals are urgently requested. The aim of this study was to compare the fresh rumen fluid (collected at slaughter, W) with that obtained from a continuous fermenter (RCF) and three methods of rumen fluid preservation (refrigeration, R, chilling, C, and freeze-drying, FD). The fermentability of different inoculum was evaluated by three in vitro tests (neutral detergent fiber (NDF) and crude protein (CP) degradability and gas production, NDFd, RDP and GP, respectively) using six feeds as substrates.
View Article and Find Full Text PDFRewired metabolism of glutamine in cancer has been well documented, but less is known about other amino acids such as histidine. Here, we use cancer models to show that decreasing the concentration of histidine in the diet strongly inhibits the growth of mutant clones induced by loss of Nerfin-1 or gain of Notch activity. In contrast, changes in dietary histidine have much less effect on the growth of wildtype neural stem cells and neural tumours.
View Article and Find Full Text PDFThe ability of cells to stably maintain their fate is governed by specific transcription regulators. Here, we show that the Scalloped (Sd) and Nervous fingers-1 (Nerfin-1) transcription factors physically and functionally interact to maintain medulla neuron fate in the Drosophila melanogaster CNS. Using Targeted DamID, we find that Sd and Nerfin-1 occupy a highly overlapping set of target genes, including regulators of neural stem cell and neuron fate, and signaling pathways that regulate CNS development such as Notch and Hippo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway, but how Cic activity is regulated in different cellular contexts remains poorly understood. We found that the kinase Minibrain (Mnb, ortholog of mammalian DYRK1A), acting through the adaptor protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein.
View Article and Find Full Text PDFCell Mol Life Sci
April 2016
The ability to maintain cells in a differentiated state and to prevent them from reprogramming into a multipotent state has recently emerged as a central theme in neural development as well as in oncogenesis. In the developing central nervous system (CNS) of the fruit fly Drosophila, several transcription factors were recently identified to be required in postmitotic cells to maintain differentiation, and in their absence, mature neurons undergo dedifferentiation, giving rise to proliferative neural stem cells and ultimately to tumor growth. In this review, we will highlight the current understanding of dedifferentiation and cell plasticity in the Drosophila CNS.
View Article and Find Full Text PDFAngiogenesis is the term used to describe all the alterations in blood vessel growth induced by a tumour mass following hypoxic stress. The occurrence of multiple strategies of vessel recruitment favours drug resistance, greatly complicating the treatment of certain tumours. In Drosophila, oxygen is conveyed to the internal organs by the tracheal system, a closed tubular network whose role in cancer growth is so far unexplored.
View Article and Find Full Text PDFCellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation.
View Article and Find Full Text PDFLoss of cell polarity is a prominent feature of epithelial cancers. Several tumour-suppressor genes are indeed involved in establishing and maintaining a correct apical-basal polarity suggesting that a link exists between disruption of epithelial polarity and the control of cell proliferation. Nevertheless, the molecular basis of this link is only beginning to be unveiled.
View Article and Find Full Text PDFGenetic analyses in Drosophila epithelia have suggested that the phenomenon of "cell competition" could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo) signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki).
View Article and Find Full Text PDFBackground: Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. Precancerous cells are often removed by cell death from normal tissues in the early steps of the tumourigenic process, but the molecules responsible for such a fundamental safeguard process remain in part elusive. With the aim to investigate the molecular crosstalk occurring between precancerous and normal cells in vivo, we took advantage of the clonal analysis methods that are available in Drosophila for studying the phenotypes due to lethal giant larvae (lgl) neoplastic mutation induced in different backgrounds and tissues.
View Article and Find Full Text PDFDrosophila lethal giant larvae (lgl) is a tumour suppressor gene whose function in establishing apical-basal cell polarity as well as in exerting proliferation control in epithelial tissues is conserved between flies and mammals. Individuals bearing lgl null mutations show a gradual loss of tissue architecture and an extended larval life in which cell proliferation never ceases and no differentiation occurs, resulting in prepupal lethality. When tissues from those individuals are transplanted into adult normal recipients, a subset of cells, possibly the cancer stem units, are again able to proliferate and give rise to metastases which migrate to distant sites killing the host.
View Article and Find Full Text PDF