Publications by authors named "Frode S Berven"

Background: Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system leading to demyelination and axonal loss. Relapsing-remitting multiple sclerosis (RRMS) is commonly treated by anti-inflammatory drugs, where one of the most effective drugs to date is the monoclonal antibody natalizumab.

Methods: The cerebrospinal fluid (CSF) proteome was analyzed in 56 patients with RRMS before and after natalizumab treatment, using label-free mass spectrometry and a subset of the changed proteins were verified by parallel reaction monitoring in a new cohort of 20 patients, confirming the majority of observed changes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is heterogenous at the molecular level. Understanding this heterogeneity is critical for AD drug development. Here we define AD molecular subtypes using mass spectrometry proteomics in cerebrospinal fluid, based on 1,058 proteins, with different levels in individuals with AD (n = 419) compared to controls (n = 187).

View Article and Find Full Text PDF

Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients.

View Article and Find Full Text PDF

This study aimed at exploring the proteomic profile of PBMCs to predict treatment response in pulmonary tuberculosis (PTB). This was a pilot study conducted among 8 adult patients from Zanzibar, Tanzania with confirmed PTB. Blood samples were collected at baseline, at 2 months of treatment, and at the end of treatment at 6 months.

View Article and Find Full Text PDF

Background: Tandem mass tag spectrometry (TMT labeling-LC-MS/MS) was utilized to examine the global proteomes of Atlantic halibut eggs at the 1-cell-stage post fertilization. Comparisons were made between eggs judged to be of good quality (GQ) versus poor quality (BQ) as evidenced by their subsequent rates of survival for 12 days. Altered abundance of selected proteins in BQ eggs was confirmed by parallel reaction monitoring spectrometry (PRM-LC-MS/MS).

View Article and Find Full Text PDF

The use of a proper sample processing methodology for maximum proteome coverage and high-quality quantitative data is an important choice to make before initiating a liquid chromatography-mass spectrometry (LC-MS)-based proteomics study. Popular sample processing workflows for proteomics involve in-solution proteome digestion and single-pot, solid-phase-enhanced sample preparation (SP3). We tested them on both HeLa cells and human plasma samples, using lysis buffers containing SDS, or guanidinium hydrochloride.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy, and non-leukemic stromal cells (including mesenchymal stem cells, MSCs) are involved in leukemogenesis and show AML-supporting effects. We investigated how constitutive extracellular mediator release by primary human AML cells alters proteomic profiles of normal bone marrow MSCs. An average of 6814 proteins (range 6493-6918 proteins) were quantified for 41 MSC cultures supplemented with AML-cell conditioned medium, whereas an average of 6715 proteins (range 6703-6722) were quantified for untreated control MSCs.

View Article and Find Full Text PDF

Background: Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular, glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. The aim of this study was to identify potential signaling pathways involved in MT formation.

View Article and Find Full Text PDF

Single-cell analysis can allow for an in-depth understanding of diseases, diagnostics, and aid the development of therapeutics. However, single-cell analysis is challenging, as samples are both extremely limited in size and complex. But the concept is gaining promise, much due to novel sample preparation approaches and the ever-improving field of mass spectrometry.

View Article and Find Full Text PDF

Autophagy is a highly conserved cellular degradation process that prevents cell damage and promotes cell survival, and clinical efforts have exploited autophagy inhibition as a therapeutic strategy in cancer. Chloroquine is a well-known antimalarial agent that inhibits late-stage autophagy. We evaluated the effects of chloroquine on cell viability and proliferation of acute myeloid leukemia acute myeloid leukemia (AML) cells derived from 81 AML patients.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) can differentiate into osteoblasts, and therapeutic targeting of these cells is considered both for malignant and non-malignant diseases. We analyzed global proteomic profiles for osteoblasts derived from ten and MSCs from six healthy individuals, and we quantified 5465 proteins for the osteoblasts and 5420 proteins for the MSCs. There was a large overlap in the profiles for the two cell types; 156 proteins were quantified only in osteoblasts and 111 proteins only for the MSCs.

View Article and Find Full Text PDF

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells.

View Article and Find Full Text PDF

Extracellular protein release is important both for the formation of extracellular matrix and for communication between cells. We investigated the extracellular protein release by in vitro cultured normal mesenchymal stem cells (MSCs) and by primary human acute myeloid leukemia (AML) cells derived from 40 consecutive patients. We observed quantifiable levels of 3082 proteins in our study; for the MSCs, we detected 1446 proteins, whereas the number of released proteins for the AML cells showed wide variation between patients (average number 1699, range 557-2380).

View Article and Find Full Text PDF

Two pathophysiological different experimental models for multiple sclerosis were analyzed in parallel using quantitative proteomics in attempts to discover protein alterations applicable as diagnostic-, prognostic-, or treatment targets in human disease. The cuprizone model reflects de- and remyelination in multiple sclerosis, and the experimental autoimmune encephalomyelitis (EAE, MOG1-125) immune-mediated events. The frontal cortex, peripheral to severely inflicted areas in the CNS, was dissected and analyzed.

View Article and Find Full Text PDF

Despite intensive research, the aetiology of multiple sclerosis (MS) remains unknown. Cerebrospinal fluid proteomics has the potential to reveal mechanisms of MS pathogenesis, but analyses must account for disease heterogeneity. We previously reported explorative multivariate analysis by hierarchical clustering of proteomics data of MS patients and controls, which resulted in two groups of individuals.

View Article and Find Full Text PDF

Background: Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive hematological malignancy. Nearly 50% of the patients who receive the most intensive treatment develop chemoresistant leukemia relapse. Although the leukemogenic events leading to relapse seem to differ between patients (i.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hematological cancer that mainly affects the elderly. Although complete remission (CR) is achieved for the majority of the patients after induction and consolidation therapies, nearly two-thirds relapse within a short interval. Understanding biological factors that determine relapse has become of major clinical interest in AML.

View Article and Find Full Text PDF

Improved tuberculosis (TB) prevention and control depend critically on the development of a simple, readily accessible rapid triage test to stratify TB risk. We hypothesized that a blood protein-based host response signature for active TB (ATB) could distinguish it from other TB-like disease (OTD) in adult patients with persistent cough, thereby providing a foundation for a point-of-care (POC) triage test for ATB. Three adult cohorts consisting of ATB suspects were recruited.

View Article and Find Full Text PDF

Every year, a large number of published studies present biomarkers for various neurological disorders. Many of these studies are based on mass spectrometry proteomics data and describe comparison of the abundance of proteins in cerebrospinal fluid between two or more disease groups. As the number of such studies is growing, it is no longer straightforward to obtain an overview of which specific proteins are increased or decreased between the numerous relevant diseases and their many subcategories, or to see the larger picture or trends between related diseases.

View Article and Find Full Text PDF

Background: Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway is constitutively activated in human acute myeloid leukemia (AML) cells and is regarded as a possible therapeutic target. Insulin is an agonist of this pathway and a growth factor for AML cells. We characterized the effect of insulin on the phosphorylation of 10 mediators in the main track of the PI3K-Akt-mTOR pathway in AML cells from 76 consecutive patients.

View Article and Find Full Text PDF

Single amino acids and small endogenous peptides play important roles in maintaining a properly functioning organism. These molecules are however currently only routinely identified in targeted approaches. In a small proof-of-concept mass spectrometry experiment, we found that by combining isobaric tags and peptidomics, and by targeting singly charged molecules, we were able to identify a significant amount of single amino acids and small endogenous peptides using a basic mass-based identification approach.

View Article and Find Full Text PDF

Na/H Exchanger 9 (NHE9) is an endosomal membrane protein encoded by the Solute Carrier 9A, member 9 gene (SLC9A9). SLC9A9 has been implicated in attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), epilepsy, multiple sclerosis and cancers. To better understand the function of NHE9 and the effects of disease-associated variants on protein-protein interactions, we conducted a quantitative analysis of the NHE9 interactome using co-immunoprecipitation and isobaric labeling-based quantitative mass spectrometry.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a heterogeneous disease, and communication between leukemic cells and their neighboring leukemia-supporting normal cells is involved in leukemogenesis. The bone marrow cytokine network is therefore important, and the mediator release profile seems more important than single mediators. It is not known whether the characterization of primary AML cell proteomes reflects the heterogeneity of the broad and dynamic constitutive mediator release profile by these cells.

View Article and Find Full Text PDF