Publications by authors named "Fritz E Kuhn"

Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).

View Article and Find Full Text PDF

The implementation of automation has already had a considerable impact on chemical and pharmaceutical industrial laboratories. However, academic laboratories have often been more reluctant to adopt such technology due to the high cost of commercial liquid handling systems, although, in many instances, there would be a huge potential to automate repetitive tasks, resulting in elevated productivity. We present here a detailed description of the setup, validation, and utilization of a multifunctional liquid automation (MULA) system that can be used to automate various chemical and biological tasks.

View Article and Find Full Text PDF

An open-chain iron pyridine-NHC framework is expanded utilizing a benzimidazole moiety to deepen the understanding of the impact of electronic variations on iron NHC epoxidation catalysts, especially regarding the stability. The thereby newly obtained iron(II) NHC complex is characterized and employed in olefin epoxidation. It is remarkably temperature tolerant and achieves a TOF of ca.

View Article and Find Full Text PDF

From previous studies, it is evident that metal-organic gold(I) complexes have antiproliferative activities. The aim of this study is not only to find new anticancer agents but also to overcome existing cytostatic resistance in cancer cells. The synthesis and medicinal evaluation of two cationic 1,3-disubstituted gold(I) bis-tetrazolylidene complexes and are reported.

View Article and Find Full Text PDF

The activation of C-C bonds by transition-metal complexes is of continuing interest and acetonitrile (MeCN) has attracted attention as a cyanide source with comparatively low toxicity for organic cyanation reactions. A diiron end-on μ-η:η-CN-bridged complex was obtained from a crystallization experiment of an open-chain iron-NHC complex, namely, μ-cyanido-κC:N-bis{[(acetonitrile-κN)[3,3'-bis(pyridin-2-yl)-1,1'-(methylidene)bis(benzimidazol-2-ylidene)]iron(II)} tris(hexafluorophosphate), [Fe(CN)(CHN)(CHN)](PF). The cyanide appears to originate from the MeCN solvent by C-C bond cleavage or through carbon-hydrogen oxidation.

View Article and Find Full Text PDF

Synthesis and characterization of the first two cyclic ethylene-bridged tetradentate NHC ligands, with an unsaturated (imidazole) and saturated backbone (2-imidazoline), are described. Complexes of both ligands containing palladium(ii) have been obtained. For platinum(ii) and gold(iii), only the unsaturated tetracarbene complexes could be isolated.

View Article and Find Full Text PDF
Article Synopsis
  • AIE materials are sensitive to external signals and can be used for anti-counterfeiting, but their response is limited by a lack of structural variation.
  • Researchers created several AIE-active regio-structural isomers by modifying a salicylaldehyde Schiff base with bromide and triphenylamine, enhancing their responsiveness.
  • The study demonstrates how these isomers can be used for multi-level decryption through mechanochromism and acidichromism, showcasing a method to control excited-state behavior for improved stimuli-responsive properties.
View Article and Find Full Text PDF

Single-component catalysts with integrated multiple reactive centers could work in concert to achieve enhanced activity tailored for specific catalytic reactions, but they remain underdeveloped. Herein, we report the construction of heterogeneous bimetallic porous coordination polymers (PCPs) containing both porphyrin and -heterocyclic carbene (NHC) metal sites via the coordinative assembly of the NHC functionalities. Three heterobimetallic PCPs (, and ) have been prepared to verify this facile synthetic strategy for the first time.

View Article and Find Full Text PDF

We have developed a visible light-induced intermolecular [2 + 2]-cycloaddition reaction between alkenes and alkynes using thioxanthone and Cu(OTf) as cocatalysts. Various quinolin-2(1)-ones, featuring diverse substituted groups, were successfully employed in this reaction, resulting in the synthesis of a series of 4,8b-dihydrocyclobuta[]quinolin-3(2a)-ones. Our methodology presents a novel synthetic approach for alkene-alkyne [2 + 2]-cycloaddition, delivering cyclobutene derivatives with exceptional regioselectivity.

View Article and Find Full Text PDF

An efficiently catalyzed synthesis of pharmaceutically relevant 1,2,3-trazoles from renewable resources is highly desirable. However, due to incompatible catalysis conditions, this endeavor remained challenging so far. Herein, a practical access protocol to 1,2,3-triazoles, starting from lignin phenolic β-O-4 with γ-OH group utilizing a vanadium-based catalyst is presented.

View Article and Find Full Text PDF

Artificial aggregation-induced emission luminogens (AIEgens) have flourished in bio-applications with the development of synthetic chemistry, which however are plagued by issues like singularity in structures and non-renewability. The unique structures and renewability of biomass moieties can compensate for these drawbacks, but their properties are hard to design and regulate due to their confined structures. Therefore, it appears to be a reasonable approach to derive AIEgens from abundant biomass (BioAIEgens), integrating the bilateral advantages of both synthetic and natural AIEgens.

View Article and Find Full Text PDF

The synthesis of a homoleptic azide-functionalised Au(I) bis-1,2,3-triazole-5-ylidene complex is reported, starting from a backbone-modified 1,2,3-triazolium salt ligand precursor. The incorporated azide handle allows for a straightforward modification of the complex according to click-chemistry protocols without impacting the steric shielding around the metal center, demonstrating the superiority of the presented triazole ligand framework over imidazole based systems. Employing the SPAAC and the CuAAC reactions, post-modification of the complex is facilitated with two model substrates, while retaining very high antiproliferative activity (nanomolar range IC values) in A2780 and MCF-7 human cancer cells.

View Article and Find Full Text PDF

One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic β-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin β-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin β-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield.

View Article and Find Full Text PDF

Cyclic iron tetracarbenes are an emerging class of macrocyclic iron N-heterocyclic carbene (NHC) complexes. They can be considered as an organometallic compound class inspired by their heme analogs, however, their electronic properties differ, due to the very strong σ-donation of the four combined NHCs in equatorial coordination. The ligand framework of iron tetracarbenes can be readily modified, allowing fine-tuning of the structural and electronic properties of the complexes.

View Article and Find Full Text PDF

The first macrocyclic and abnormally coordinating, mesoionic -heterocyclic carbene iron complex has been synthesised and characterised ESI-MS, EA, SC-XRD, CV, NMR and UV/Vis spectroscopy. C-NMR spectroscopy and CV measurements indicate a strong σ-donor ability of the carbene moieties, suggesting an efficient catalytic activity of the iron complex in oxidation reactions. Initial tests in the epoxidation of -cyclooctene as a model substrate confirm this assumption.

View Article and Find Full Text PDF

Direct production of heterocyclic aromatic compounds from lignin β-O-4 models remains a huge challenge due to the incompatible catalysis for aryl ether bonds cleavage and heterocyclic ring formation. Herein, the first example of quinoline synthesis from β-O-4 model compounds by a one-pot cascade reaction is reported in yields up to 89 %. The reaction pathway involves selective cleavage of C-O bonds, dehydrogenation, aldol condensation, C-N bond formation along with heterocyclic aromatic ring construction.

View Article and Find Full Text PDF

Heteroatom-participated lignin depolymerization for heterocyclic aromatic compounds production is of great importance to expanding the product portfolio and meeting value-added biorefinery demand, but it is also particularly challenging. In this work, the synthesis of pyrimidines from lignin β-O-4 model compounds, the most abundant segment in lignin, mediated by NaOH through a one-pot multi-component cascade reaction is reported. Mechanism study suggests that the transformation starts by NaOH-induced deprotonation of Cα-H bond in β-O-4 model compounds, and involves highly coupled sequential cleavage of C-O bonds, alcohol dehydrogenation, aldol condensation, and dehydrogenative aromatization.

View Article and Find Full Text PDF

The synthesis and antiproliferative activity of Mes- and iPr-substituted gold(I) bis(1,2,3-triazol-5-ylidene) complexes in various cancer cell lines are reported, showing nanomolar IC values of 50 nM (lymphoma cells) and 500 nM (leukemia cells), respectively (Mes < iPr). The compounds exclusively induce apoptosis (50 nM to 5 μM) instead of necrosis in common malignant blood cells (leukemia cells) and do not affect non-malignant leucocytes. Remarkably, the complexes not only overcome resistances against the well-established cytostatic etoposide, cytarabine, daunorubicin, and cisplatin but also promote a synergistic effect of up to 182% when used with daunorubicin.

View Article and Find Full Text PDF

Catalytic conversion of lignin into heteroatom functionalized chemicals is of great importance to bring the biorefinery concept into reality. Herein, a new strategy was designed for direct transformation of lignin β-O-4 model compounds into benzylamines and phenols in moderate to excellent yields in the presence of organic amines. The transformation involves dehydrogenation of C -OH, hydrogenolysis of the C -O bond and reductive amination in the presence of Pd/C catalyst.

View Article and Find Full Text PDF

The first diiron(iii,iv)-μ2-oxo tetracarbene complex is isolated and characterized by SC-XRD, UV/Vis, EPR, Evans' NMR and elemental analysis. CV indicates the presence of a transient high-valent diiron(iv)-μ2-oxo species. Its formation and decay is investigated via UV/Vis kinetics and NMR.

View Article and Find Full Text PDF

High levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery.

View Article and Find Full Text PDF

Fluorescent Pd(ii) and Pt(ii) complexes bearing 4-methylene-7-methoxycoumarin (MMC) and 2,6-diispropylphenyl (Dipp) substituted NHC/1,2,3-triazole hybrid ligands are described. Depending on the reaction conditions two different ligand coordination modes are observed, i.e.

View Article and Find Full Text PDF

A straightforward modification route to obtain mono- and di-substituted anthroyl ester bridge functionalized dinuclear Au(I) bis-N-heterocyclic carbene complexes is presented. The functionalization can be achieved starting from a hydroxyl-functionalized ligand precursor followed by transmetallation of the corresponding Ag complex or via esterification of the hydroxyl-functionalized gold complex. The compounds are characterized by NMR-spectroscopy, ESI-MS, elemental analysis and SC-XRD.

View Article and Find Full Text PDF