Publications by authors named "Fritton J"

Rationale: The role of radiation-induced bystander effects in cancer therapy with alpha-particle emitting radiopharmaceuticals remains unclear. With renewed interest in using alpha-particle emitters to sterilize disseminated tumor cells, micrometastases, and tumors, a better understanding of the direct effects of alpha particles and the contribution of the bystander responses they induce is needed to refine dosimetric models that help predict clinical benefit. Accordingly, this work models and quantifies the relative importance of direct effects (DE) and bystander effects (BE) in the growth delay of human breast cancer xenografts observed previously in the tibiae of mice treated with RaCl.

View Article and Find Full Text PDF

Radiation-induced bystander effects have been implicated in contributing to the growth delay of disseminated tumor cells (DTC) caused by RaCl, an alpha particle-emitting radiopharmaceutical. To understand how RaCl affects the growth, we have quantified biological changes caused by direct effects of radiation and bystander effects caused by the emitted radiations on DTC and osteocytes. Characterizing these effects contribute to understanding the efficacy of alpha particle-emitting radiopharmaceuticals and guide expansion of their use clinically.

View Article and Find Full Text PDF

Fructose is metabolized in the cytoplasm by the enzyme ketohexokinase (KHK), and excessive consumption may affect bone health. Previous work in calcium-restricted, growing mice demonstrated that fructose disrupted intestinal calcium transport. Thus, we hypothesized that the observed effects on bone were dependent on fructose metabolism and took advantage of a KHK knockout (KO) model to assess direct effects of high plasma fructose on the long bones of growing mice.

View Article and Find Full Text PDF

The role of radiation-induced bystander effects in radiation therapy remains unclear. With renewed interest in therapy with α-particle emitters, and their potential for sterilizing disseminated tumor cells (DTCs), it is critical to determine the contribution of bystander effects to the overall response so they can be leveraged for maximum clinical benefit. Female athymic nude mice were administered 0, 50, or 600 kBq/kg RaCl to create bystander conditions.

View Article and Find Full Text PDF

Current fructose consumption levels often overwhelm the intestinal capacity to absorb fructose. We investigated the impact of fructose malabsorption on intestinal endocrine function and addressed the role of the microbiota in this process. To answer this question, a mouse model of moderate fructose malabsorption [ketohexokinase mutant (KHK)] and wild-type (WT) littermate mice were used and received a 20%-fructose (KHK-F and WT-F) or 20%-glucose diet.

View Article and Find Full Text PDF

Recent studies have demonstrated matrix-mineral alterations in bone tissue surrounding osteocytes in estrogen-deficient animals. While cortical bone porosity has been shown to be a contributor to the mechanical properties of bone tissue, little analysis has been done to investigate the effects of estrogen deficiency on bone's microporosities, including the vascular and osteocyte lacunar porosities. In this study we examined alterations in cortical bone microporosity, mineralization, and cancellous bone architecture due to estrogen deficiency in the ovariectomized rat model of postmenopausal osteoporosis.

View Article and Find Full Text PDF

A remodeling cycle sets the size of the osteon and associated lamellae in the basic multicellular unit. Treatments and aging affect these micro-structural features. We previously demonstrated decreased fatigue life with an unexplained mechanism and decreased osteon size in cortical bone treated with high-dose bisphosphonate.

View Article and Find Full Text PDF

Background Context: Previous studies have found that insulin or insulin-like growth factor treatment can stimulate fracture healing in diabetic and normal animal models, and increase fusion rates in a rat spinal fusion model. Insulin-mimetic agents, such as zinc, have demonstrated antidiabetic effects in animal and human studies, and these agents that mimic the effects of insulin could produce the same beneficial effects on bone regeneration and spinal fusion.

Purpose: The purpose of this study was to analyze the effects of locally applied zinc on spinal fusion in a rat model.

View Article and Find Full Text PDF

Osteocyte apoptosis is required to induce intracortical bone remodeling after microdamage in animal models, but how apoptotic osteocytes signal neighboring "bystander" cells to initiate the remodeling process is unknown. Apoptosis has been shown to open pannexin-1 (Panx1) channels to release adenosine diphosphate (ATP) as a "find-me" signal for phagocytic cells. To address whether apoptotic osteocytes use this signaling mechanism, we adapted the rat ulnar fatigue-loading model to reproducibly introduce microdamage into mouse cortical bone and measured subsequent changes in osteocyte apoptosis, receptor activator of NF-κB ligand (RANKL) expression and osteoclastic bone resorption in wild-type (WT; C57Bl/6) mice and in mice genetically deficient in Panx1 (Panx1KO).

View Article and Find Full Text PDF

Redirecting the adipogenic potential of bone marrow-derived mesenchymal stem cells to other lineages, particularly osteoblasts, is a key goal in regenerative medicine. Controlling lineage selection through chromatin remodeling complexes such as SWI/SNF, which act coordinately to establish new patterns of gene expression, would be a desirable intervention point, but the requirement for the complex in essentially every lineage pathway has generally precluded selectivity. However, a novel approach now appears possible by targeting the subset of SWI/SNF powered by the alternative ATPase, mammalian brahma (BRM).

View Article and Find Full Text PDF

The biomechanics literature contains many well-understood mechanisms behind typical fracture types that have important roles in treatment planning. The recent association of "atypical" fractures with long-term use of drugs designed to prevent osteoporosis has renewed interest in the effects of agents on bone tissue-level quality. While this class of fracture was recognized prior to the introduction of the anti-resorptive bisphosphonate drugs and recently likened to stress fractures, the mechanism(s) that lead to atypical fractures have not been definitively identified.

View Article and Find Full Text PDF

Excessive fructose consumption inhibits adaptive increases in intestinal Ca2+ transport in lactating and weanling rats with increased Ca2+ requirements by preventing the increase in serum levels of 1,25(OH)2D3. Here we tested the hypothesis that chronic fructose intake decreases 1,25(OH)2D3 levels independent of increases in Ca2+ requirements. Adult mice fed for five wk a high glucose-low Ca2+ diet displayed expected compensatory increases in intestinal and renal Ca2+ transporter expression and activity, in renal CYP27B1 (coding for 1α-hydroxylase) expression as well as in serum 1,25(OH)2D3 levels, compared with mice fed isocaloric glucose- or fructose-normal Ca2+ diets.

View Article and Find Full Text PDF

Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading.

View Article and Find Full Text PDF

Concern that long-term bisphosphonate therapy may significantly undermine bone quality in osteoporotic patients has been heightened by rare instances of low-impact atypical femoral fractures that are often bilateral. Reduced fracture toughness is believed to result from reduced bone remodeling, leading to increased homogeneity in bone microarchitecture, narrowed bone mineral density distribution, and increased bone tissue microdamage burden. We postulate that these long-term alterations in bone quality may undermine the ongoing remodeling surrounding osteointegrated endosseous dental implants as well.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between insulin-like growth factor 1 (IGF-1) and parathyroid hormone (PTH) in promoting bone growth, highlighting their synergistic effects.
  • Using different mouse models, researchers evaluated how varying IGF-1 levels affected bone structure and mechanics in response to PTH treatment.
  • The findings reveal that while PTH can still promote bone growth in the absence of tissue IGF-1, its effectiveness is significantly enhanced when tissue IGF-1 is present, indicating that tissue IGF-1 is essential for maximizing PTH's anabolic actions on bone.
View Article and Find Full Text PDF

Age-related osteoporosis is accompanied by an increase in marrow adiposity and a reduction in serum insulin-like growth factor-1 (IGF-1) and the binding proteins that stabilize IGF-1. To determine the relationship between these proteins and bone marrow adiposity, we evaluated the adipogenic potential of marrow-derived mesenchymal stromal cells (MSCs) from mice with decreased serum IGF-1 due to knockdown of IGF-1 production by the liver or knock-out of the binding proteins. We employed 10-16-week-old, liver-specific IGF-1-deficient, IGFBP-3 knock-out (BP3KO) and acid-labile subunit knock-out (ALSKO) mice.

View Article and Find Full Text PDF

Purpose: The aim was to investigate that a bio-degradable alginate and poly lactide-co-glycolide (PLG) system capable of delivering growth factors sequentially would be superior to single growth factor delivery in promoting neovascularization and improving perfusion.

Methods: Three groups of apoE null mice underwent unilateral hindlimb ischemia surgery and received ischemic limb intramuscular injections of alginate (Blank), alginate containing VEGF(165) (VEGF), or alginate containing VEGF(165) combined with PLG microspheres containing PDGF-BB (VEGF/PDGF). Vascularity in the ischemic hindlimb was assessed by morphologic and immunohistochemical end-points, while changes in blood flow were assessed by Laser Doppler Perfusion Index.

View Article and Find Full Text PDF

Early after estrogen loss in postmenopausal women and ovariectomy (OVX) of animals, accelerated endosteal bone resorption leads to marrow expansion of long bone shafts that reduce mechanical integrity. Both growth hormone (GH) and insulin-like growth factor (IGF-1) are potent regulators of bone remodeling processes. To investigate the role of the GH/IGF-1 axis with estrogen deficiency, we used the liver IGF-1-deficient (LID) mouse.

View Article and Find Full Text PDF

Type 2 diabetics often demonstrate normal or increased bone mineral density, yet are at increased risk for bone fracture. Furthermore, the anti-diabetic oral thiazolidinediones (PPARgamma agonists) have recently been shown to increase bone fractures. To investigate the etiology of possible structural and/or material quality defects, we have utilized a well-described mouse model of Type 2 diabetes (MKR).

View Article and Find Full Text PDF

Introduction: The study of adaptation to mechanical loading under osteopenic conditions is relevant to the development of osteoporotic fracture prevention strategies. We previously showed that loading increased cancellous bone volume fraction and trabecular thickness in normal male mice. In this study, we tested the hypothesis that cyclic mechanical loading of the mouse tibia inhibits orchidectomy (ORX)-associated cancellous bone loss.

View Article and Find Full Text PDF

Background: Observational studies suggest a strong relationship between menopause and vascular calcification. Receptor activator of nuclear factor-kappaBeta ligand (RANKL) and osteoprotegerin (OPG) are critical regulators of bone remodelling and modulate vascular calcification. We assessed the hypothesis that ovariectomy increases vascular calcification via the OPG/RANKL axis.

View Article and Find Full Text PDF

Adaptation to mechanical loading has been studied extensively in cortical, but not cancellous bone. However, corticocancellous sites are more relevant to osteoporosis and related fracture risk of the hip and spine. We tested the hypotheses that adaptation in a long bone would be greater at cancellous than cortical sites and would depend on the term of daily in vivo cyclic axial loading.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1tlkj9ejqtasnv8phc3idnk70dpetktv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once