Publications by authors named "Frits Mooi"

Article Synopsis
  • Whooping cough (pertussis) is a contagious respiratory disease caused by a bacterium, and despite high vaccination rates, it has seen a resurgence in Australia with two significant epidemics since 2007.
  • A genomic study of 385 samples from 2008 to 2017 revealed multiple co-circulating epidemic lineages, with different genetic variations expanding and contracting during the outbreaks.
  • The findings indicate that new lineages are more likely to spread locally within the first 1.5 years, and a certain allele replacement may help the bacteria evade immune detection in a highly vaccinated population.
View Article and Find Full Text PDF

Bordetella pertussis vaccine escape mutants that lack expression of the pertussis antigen pertactin (Prn) have emerged in vaccinated populations in the last 10-20 years. Additionally, clinical isolates lacking another acellular pertussis (aP) vaccine component, filamentous hemagglutinin (FHA), have been found sporadically. Here, we show that both whole-cell pertussis (wP) and aP vaccines induced protection in the lungs of mice, but that the wP vaccine was more effective in nasal clearance.

View Article and Find Full Text PDF

Whooping cough, caused by Bordetella pertussis, has resurged and presents a global health burden worldwide. B. pertussis strains unable to produce the acellular pertussis vaccine component pertactin (Prn), have been emerging and in some countries represent up to 95% of recent clinical isolates.

View Article and Find Full Text PDF

There is a lack of insight into the basic mechanisms by which Bordetella pertussis adapts to the local host environment during infection. We analyzed B. pertussis gene expression in the upper and lower airways of mice and compared this to SO4-induced in vitro Bvg-regulated gene transcription.

View Article and Find Full Text PDF

Pertussis or whooping cough is currently the most prevalent vaccine-preventable childhood disease despite >85% global vaccination coverage. In recent years incidence has greatly increased in several high-income countries that have switched from the first-generation, whole-cell vaccine to the newer acellular vaccines, calling for improved vaccination strategies with better vaccines. We have developed a live attenuated pertussis vaccine candidate, called BPZE1, which is currently in clinical development.

View Article and Find Full Text PDF

Despite high vaccine coverage, whooping cough caused by Bordetella pertussis remains one of the most common vaccine-preventable diseases worldwide. Introduction of whole-cell pertussis (wP) vaccines in the 1940s and acellular pertussis (aP) vaccines in 1990s reduced the mortality due to pertussis. Despite induction of both antibody and cell-mediated immune (CMI) responses by aP and wP vaccines, there has been resurgence of pertussis in many countries in recent years.

View Article and Find Full Text PDF

Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity.

View Article and Find Full Text PDF

Pertussis is a highly contagious disease mainly caused by Bordetella pertussis. Despite the massive use of vaccines, since the 1950s the disease has become re-emergent in 2000 with a shift in incidence from infants to adolescents and adults. Clearly, the efficacy of current cellular or acellular vaccines, formulated from bacteria grown in stirred bioreactors is limited, presenting a challenge for future vaccine development.

View Article and Find Full Text PDF

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin.

View Article and Find Full Text PDF

Background: Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B.

View Article and Find Full Text PDF

The introduction of vaccination in the 1950s significantly reduced the morbidity and mortality of pertussis. However, since the 1990s, a resurgence of pertussis has been observed in vaccinated populations, and a number of causes have been proposed for this phenomenon, including improved diagnostics, increased awareness, waning immunity, and pathogen adaptation. The resurgence of pertussis highlights the importance of standardized, sensitive, and specific laboratory diagnoses, the lack of which is responsible for the large differences in pertussis notifications between countries.

View Article and Find Full Text PDF
Article Synopsis
  • - In Austria, despite a high vaccination coverage (around 90%) for pertussis in infants, cases have risen among all age groups, suggesting both herd immunity and vaccine effectiveness issues.
  • - A study examined genetic variations in Bordetella pertussis strains from Austrian cities between 2002 and 2008, utilizing various molecular techniques to analyze samples and identify polymorphisms in critical virulence genes.
  • - The findings highlighted a predominance of non-vaccine types and significant mutation presence, particularly the ptxP3 allele, which could impact future vaccination strategies against pertussis.
View Article and Find Full Text PDF

Pertussis is an infectious respiratory disease of humans caused by the gram-negative pathogen Bordetella pertussis. The use of acellular pertussis vaccines (aPs) which induce immunity of relative short duration and the emergence of vaccine-adapted strains are thought to have contributed to the recent resurgence of pertussis in industrialized countries despite high vaccination coverage. Current pertussis vaccines consist of antigens derived from planktonic bacterial cultures.

View Article and Find Full Text PDF

Background: Bordetella pertussis can cause severe respiratory disease and death in children. In recent years, large outbreaks have occurred in high-income countries; however, little is known about pertussis incidence in sub-Saharan Africa.

Methods: We evaluated antibody responses to pertussis toxin (Ptx) from individuals aged between 2 and 90 years in rural Gambia.

View Article and Find Full Text PDF

Bordetella pertussis causes whooping cough or pertussis, a highly contagious disease of the respiratory tract. Despite high vaccination coverage, reported cases of pertussis are rising worldwide and it has become clear that the current vaccines must be improved. In addition to the well-known protective role of antibodies and T cells during B.

View Article and Find Full Text PDF

Large outbreaks of pertussis occur despite vaccination. A first step in the analyses of outbreaks is strain typing. However, the typing of Bordetella pertussis, the causative agent of pertussis, is problematic because the available assays are insufficiently discriminatory, not unequivocal, time-consuming, and/or costly.

View Article and Find Full Text PDF

Bordetella pertussis is the causative agent of pertussis, a disease which has resurged despite vaccination. We report the complete, annotated genomes of isolates B1917 and B1920, representing two lineages predominating globally in the last 50 years. The B1917 lineage has been associated with the resurgence of pertussis in the 1990s.

View Article and Find Full Text PDF

Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system.

View Article and Find Full Text PDF

Pertussis is a highly infectious respiratory disease of humans caused by the bacterium Bordetella pertussis. Despite high vaccination coverage, pertussis has re-emerged globally. Causes for the re-emergence of pertussis include limited duration of protection conferred by acellular pertussis vaccines (aP) and pathogen adaptation.

View Article and Find Full Text PDF

Increasing incidence has led to the re-appearance of pertussis as a public health problem in developed countries. Pertussis infection is usually mild in vaccinated children and adults, but it can be fatal in infants who are too young for effective vaccination (≤3 months). Tailoring of control strategies to prevent infection of the infant hinges on the availability of estimates of key epidemiological quantities.

View Article and Find Full Text PDF

Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation.

View Article and Find Full Text PDF

Pertussis is a highly contagious, acute respiratory disease in humans caused by the Gram-negative pathogen Bordetella pertussis. Pertussis has resurged in the face of intensive vaccination and this has coincided with the emergence of strains carrying a particular allele for the pertussis toxin promoter, ptxP3, which is associated with higher levels of pertussis toxin (Ptx) production. Within 10 to 20 years, ptxP3 strains have nearly completely replaced the previously dominant ptxP1 strains resulting in a worldwide selective sweep.

View Article and Find Full Text PDF

Pertussis (whooping cough) is a severe infectious disease in infants less than 6 months old. Mass vaccination programmes have been unable to halt transmission effectively. Strategies to protect new-borns against infection include vaccination of the neonate or the mother directly after birth (cocooning), or the mother during pregnancy (maternal).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsgfsto6e81i1vnpdcsvjmbvj7dcp03al): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once