Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking.
View Article and Find Full Text PDFDecrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function.
View Article and Find Full Text PDFBackground: Mutagenesis screens in the mouse have been proven useful for the identification of novel gene functions and generation of interesting mutant alleles. Here we describe a phenotype-based screen for recessive mutations affecting embryonic development.
Methodology/principal Findings: Mice were mutagenized with N-ethyl-N-nitrosourea (ENU) and following incrossing the offspring, embryos were analyzed at embryonic day 10.
The mouse Btaf1 gene, an ortholog of yeast MOT1, encodes a highly conserved general transcription factor. The function of this SNF2-like ATPase has been studied mainly in yeast and human cells, which has revealed that it binds directly to TBP, forming the B-TFIID complex. This complex binds to core promoters of RNA polymerase II-transcribed genes and, of crucial importance, BTAF1-TBP interactions have been shown to affect the kinetics of TBP-promoter interactions.
View Article and Find Full Text PDFObjective Deregulation of the Wnt signalling pathway by mutations in the Apc or β-catenin genes underlies colorectal carcinogenesis. As a result, β-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear β-catenin, with the highest levels observed at the invasion front.
View Article and Find Full Text PDFDirecting the orientation of cells in three dimensions is a fundamental aspect of many of the processes underlying the generation of the appropriate shape and function of tissues and organs during embryonic development. In an epithelium, this requires not only the establishment of apicobasal polarity, but also cell arrangement in a specific direction in the plane of the cell sheet. The molecular pathway central to regulating this planar cell polarity (PCP) was originally discovered in the fruit fly Drosophila melanogaster and has more recently been shown to act in a highly analogous way in vertebrates, involving a strongly overlapping set of genes.
View Article and Find Full Text PDFThe biological role and structure-function relationship of the Na(+)Ca(2+) exchanger NCX1 have been the subject of much investigation. Subtle mutagenesis to study the function of a protein seems only feasible in in vitro systems, but genetic forward screens have the potential to provide in vivo models to study single amino acid substitutions. In a genetic screen in mouse, we have isolated a mutant line carrying a novel mutant allele of the mouse Ncx1 gene.
View Article and Find Full Text PDFBackground: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial.
View Article and Find Full Text PDFAmong the cellular properties that are essential for the organization of tissues during animal development, the importance of cell polarity in the plane of epithelial sheets has become increasingly clear in the past decades. Planar cell polarity (PCP) signaling in vertebrates has indispensable roles in many aspects of their development, in particular, controlling alignment of various types of epithelial cells. Disrupted PCP has been linked to developmental defects in animals and to human pathology.
View Article and Find Full Text PDFBackground: Identifying molecular pathways regulating the development of pacemaking and coordinated heartbeat is crucial for a comprehensive mechanistic understanding of arrhythmia-related diseases. Elucidation of these pathways has been complicated mainly by an insufficient definition of the developmental structures involved in these processes and the unavailability of animal models specifically targeting the relevant tissues. Here, we report on a highly restricted expression pattern of the homeodomain transcription factor Shox2 in the sinus venosus myocardium, including the sinoatrial nodal region and the venous valves.
View Article and Find Full Text PDFThe role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH signaling, but we now show that in early Alx4-/- limb buds the anterior ectopic expression of Fgf4 and Hoxd13, and therefore disruption of AP-patterning, occurs independently of SHH signaling.
View Article and Find Full Text PDFThe diverse cellular contributions to the skeletal elements of the vertebrate shoulder and pelvic girdles during embryonic development complicate the study of their patterning. Research in avian embryos has recently clarified part of the embryological basis of shoulder formation. Although dermomyotomal cells provide the progenitors of the scapular blade, local signals appear to have an essential guiding role in this process.
View Article and Find Full Text PDFThe precise anterior boundaries of Hox expression domains are critical for correct antero-posterior (A-P) patterning of the vertebrate longitudinal axis. Retinoic acid (RA) signalling has been shown to play an important role in the specification of pre-otic rhombomere boundaries, and in the regulation of 3' Hox expression within this territory. In addition, we recently showed that RA signalling controls 5'Hoxb gene expression in the caudal hindbrain, which had not been discovered before.
View Article and Find Full Text PDFMany members of the animal kingdom display coat or skin color differences along their dorsoventral axis. To determine the mechanisms that control regional differences in pigmentation, we have studied how a classical mouse mutation, droopy ear (de(H)), affects dorsoventral skin characteristics, especially those under control of the Agouti gene. Mice carrying the Agouti allele black-and-tan (a(t)) normally have a sharp boundary between dorsal black hair and yellow ventral hair; the de(H) mutation raises the pigmentation boundary, producing an apparent dorsal-to-ventral transformation.
View Article and Find Full Text PDFDuring embryogenesis, target genes of retinoid signaling are able to respond differently to identical concentrations of retinoids. Small differences in the retinoic acid response elements (RARE) may be essential for these distinct responses. Recently, we identified a RARE in a Hox enhancer (dubbed distal element) that is active relatively late during mouse development.
View Article and Find Full Text PDFAristaless-related genes encode a structurally defined group of homeoproteins that share a C-terminal stretch of amino acids known as the OAR- or aristaless domain. Many aristaless-related genes have been linked to major developmental functions, but the function of the aristaless domain itself is poorly understood. Expression and functional studies have shown that a subgroup of these genes, including Prx1, Prx2, Alx3, Alx4 and Cart1, is essential for correct morphogenesis of the limbs and cranium.
View Article and Find Full Text PDFWe describe the regulatory interactions that cause anterior extension of the mouse 5' Hoxb expression domains from spinal cord levels to their definitive boundaries in the posterior hindbrain between embryonic day E10 and E11.5. This anterior expansion is retinoid dependent since it does not occur in mouse embryos deficient for the retinoic acid-synthesizing enzyme retinaldehyde dehydrogenase 2.
View Article and Find Full Text PDFDistal limb development and specification of digit identities in tetrapods are under the control of a mesenchymal organizer called the polarizing region. Sonic Hedgehog (SHH) is the morphogenetic signal produced by the polarizing region in the posterior limb bud. Ectopic anterior SHH signaling induces digit duplications and has been suspected as a major cause underlying congenital malformations that result in digit polydactyly.
View Article and Find Full Text PDF