Publications by authors named "Frits Kamp"

The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies.

View Article and Find Full Text PDF

Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations.

View Article and Find Full Text PDF

Imbalances in the amounts of amyloid-β peptides (Aβ) generated by the membrane proteases β- and γ-secretase are considered as a trigger of Alzheimer's disease (AD). Cell-free studies of γ-secretase have shown that increasing membrane thickness modulates Aβ generation but it has remained unclear if these effects are translatable to cells. Here we show that the very long-chain fatty acid erucic acid (EA) triggers acyl chain remodeling in AD cell models, resulting in substantial lipidome alterations which included increased esterification of EA in membrane lipids.

View Article and Find Full Text PDF

GGGGCC (GC) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases.

View Article and Find Full Text PDF
Article Synopsis
  • - Previous research highlights the gut microbiome's significant influence on the progression of Alzheimer's disease, but the specific mechanisms remained unclear.
  • - The study identifies short chain fatty acids (SCFAs) produced by gut bacteria as key factors that increase amyloid beta (Aβ) plaque formation in the brain.
  • - Findings show that germ-free mice with Alzheimer’s had fewer Aβ plaques and lower SCFA levels, but adding SCFAs back increased both plaques and altered microglial activity, suggesting SCFAs affect the immune response in the brain.
View Article and Find Full Text PDF

Steroids play an important role in cell regulation and homeostasis. Many diseases like Alzheimer's disease or Smith-Lemli-Opitz syndrome are known to be associated with deviations in the steroid profile. Most published methods only allow the analysis of small subgroups of steroids and cannot give an overview of the total steroid profile.

View Article and Find Full Text PDF

Background: Acute infection is a well-established risk factor of cardiovascular inflammation increasing the risk for a cardiovascular complication within the first weeks after infection. However, the nature of the processes underlying such aggravation remains unclear. Lipopolysaccharide derived from Gram-negative bacteria is a potent activator of circulating immune cells including neutrophils, which foster inflammation through discharge of neutrophil extracellular traps (NETs).

View Article and Find Full Text PDF

While fibrillar deposits of hyperphosphorylated protein tau are a key hallmark of several neurodegenerative diseases such as Alzheimer's disease, small oligomers have been speculated to be the key toxic aggregate species. Trivalent metal ions were shown to promote tau oligomer formation . However, little is known about potential intercellular spreading mechanisms or toxic modes of action of such oligomers.

View Article and Find Full Text PDF

Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species.

View Article and Find Full Text PDF

The biophysical properties and biological functions of membranes are highly dependent on lipid composition. Supplementing cellular membranes with very long chain fatty acids (vlcFAs) is notoriously difficult given the extreme insolubility of vlcFAs in aqueous solution. Herein, we report a solvent-free, photochemical approach to enrich target membranes with vlcFA.

View Article and Find Full Text PDF

Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous ribonucleoprotein (hnRNP) A3 as an interactor of the sense repeat RNA that reduces its translation into DPRs.

View Article and Find Full Text PDF

Misfolding and aggregate formation by the tau protein has been closely related with neurotoxicity in a large group of human neurodegenerative disorders, which includes Alzheimer's disease. Here, we investigate the membrane-active properties of tau oligomers on mitochondrial membranes, using minimalist in vitro model systems. Thus, exposure of isolated mitochondria to oligomeric tau evoked a disruption of mitochondrial membrane integrity, as evidenced by a combination of organelle swelling, efflux of cytochrome c and loss of the mitochondrial membrane potential.

View Article and Find Full Text PDF

Aggregation of the amyloid-forming α-synuclein (αS) protein is closely associated with the etiology of Parkinson's disease (PD), the most common motor neurodegenerative disorder. Many studies have shown that soluble aggregation intermediates of αS, termed oligomers, permeabilize a variety of phospholipid membranes; thus, membrane disruption may represent a key pathogenic mechanism of αS toxicity. Given the centrality of mitochondrial dysfunction in PD, we therefore probed the formation of ion-permeable pores by αS oligomers in planar lipid bilayers reflecting the complex phospholipid composition of mitochondrial membranes.

View Article and Find Full Text PDF

Sulfoconjugates of sterols play important roles as neurosteroids, neurotransmitters, and ion channel ligands in health and disease. In most cases, sterol conjugate analysis is performed with liquid chromatography-mass spectrometry. This is a valuable tool for routine analytics with the advantage of direct sterol sulfates analysis without previous cleavage and/or derivatization.

View Article and Find Full Text PDF

Autoantibodies to myelin oligodendrocytes glycoprotein (MOG) are found in a fraction of patients with inflammatory demyelination and are detected with MOG-transfected cells. While the prototype anti-MOG mAb 8-18C5 and polyclonal anti-MOG responses from different mouse strains largely recognize the FG loop of MOG, the human anti-MOG response is more heterogeneous and human MOG-Abs recognizing different epitopes were found to be pathogenic. The aim of this study was to get further insight into details of antigen-recognition by human MOG-Abs focusing on the impact of glycosylation.

View Article and Find Full Text PDF

Intramembrane cleavage of the β-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline.

View Article and Find Full Text PDF

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation.

View Article and Find Full Text PDF

Six α-synuclein (aSyn) point mutations are currently known to be associated with familial parkinsonism: A30P, E46K, H50Q, G51D, A53E, and A53T. We performed a comprehensive in vitro analysis to study the impact of all aSyn mutations on lipid binding and aggregation behavior. Markedly reduced lipid binding of A30P, moderately attenuated binding of G51D, and only very slightly reduced binding for the other mutants were observed.

View Article and Find Full Text PDF

The uncoupling protein (UCP1) is a proton (H) transporter in the mitochondrial inner membrane. By dissipating the electrochemical H gradient, UCP1 uncouples respiration from ATP synthesis, which drives an increase in substrate oxidation via the TCA cycle flux that generates more heat. The mitochondrial uncoupling-mediated non-shivering thermogenesis in brown adipose tissue is vital primarily to mammals, such as rodents and new-born humans, but more recently additional functions in adult humans have been described.

View Article and Find Full Text PDF

Objective: Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) occur in a proportion of patients with inflammatory demyelinating diseases of the central nervous system (CNS). We analyzed their pathogenic activity by affinity-purifying these antibodies (Abs) from patients and transferring them to experimental animals.

Methods: Patients with Abs to MOG were identified by cell-based assay.

View Article and Find Full Text PDF

Bexarotene is a pleiotropic molecule that has been proposed as an amyloid-β (Aβ)-lowering drug for the treatment of Alzheimer's disease (AD). It acts by upregulation of an apolipoprotein E (apoE)-mediated Aβ clearance mechanism. However, whether bexarotene induces removal of Aβ plaques in mouse models of AD has been controversial.

View Article and Find Full Text PDF

Intronic hexanucleotide (G4C2) repeat expansions in C9orf72 are genetically associated with frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat RNA accumulates within RNA foci but is also translated into disease characterizing dipeptide repeat proteins (DPR). Repeat-dependent toxicity may affect nuclear import.

View Article and Find Full Text PDF

One of the key molecular events underlying the pathogenesis of Parkinson's disease (PD) is the aberrant misfolding and aggregation of the α-synuclein (αS) protein into higher-order oligomers that play a key role in neuronal dysfunction and degeneration. A wealth of experimental data supports the hypothesis that the neurotoxicity of αS oligomers is intrinsically linked with their ability to interact with, and disrupt, biological membranes; especially those membranes having negatively-charged surfaces and/or lipid packing defects. Consequences of αS-lipid interaction include increased membrane tension, permeation by pore formation, membrane lysis and/or leakage due to the extraction of lipids from the bilayer.

View Article and Find Full Text PDF

Amyloid-β (Aβ) plaques and α-synuclein (α-syn)-rich Lewy bodies are the major neuropathological hallmarks of Alzheimer's disease (AD) and Parkinson's disease, respectively. An overlap of pathologies is found in most individuals with dementia with Lewy bodies (DLB) and in more than 50% of AD cases. Their brains display substantial α-syn accumulation not only in Lewy bodies, but also in dystrophic neurites decorating Aβ plaques.

View Article and Find Full Text PDF