Publications by authors named "Fristrom J"

The Stubble-stubbloid (Sb-sbd) gene is required for ecdysone-regulated epithelial morphogenesis of imaginal tissues during Drosophila metamorphosis. Mutations in Sb-sbd are associated with defects in apical cell shape changes critical for the evagination of the leg imaginal disc and with defects in assembly and extension of parallel actin bundles in growing mechanosensory bristles. The Sb-sbd gene encodes a type II transmembrane serine protease (TTSP).

View Article and Find Full Text PDF

The Drosophila RhoA (Rho1) GTPase is essential for postembryonic morphogenesis of leg and wing imaginal discs. Mutations in RhoA enhance leg and wing defects associated with mutations in zipper, the gene encoding the heavy chain of nonmuscle myosin II. We demonstrate here that mutations affecting the RhoA signaling pathway also interact genetically with mutations in the Stubble-stubbloid (Sb-sbd) locus that encodes an unusual type II transmembrane serine protease required for normal leg and wing morphogenesis.

View Article and Find Full Text PDF

We show that the Drosophila gene rhea, isolated because its wing blister phenotype is typical of mutants affecting integrin function, encodes talin. Embryos deficient in talin have very similar phenotypes to integrin (betaPS) null embryos, including failure in germ band retraction and muscle detachment. We demonstrate that talin is not required for the presence of integrins on the cell surface or their localization at muscle termini.

View Article and Find Full Text PDF

Metamorphosis in Drosophila melanogaster is orchestrated by the steroid hormone ecdysone, which triggers a cascade of primary-response transcriptional regulators and secondary effector genes during the third larval instar and prepupal periods of development. The early ecdysone-response Broad-Complex (BR-C) gene, a key regulator of this cascade, is defined by three complementing functions (rbp, br, and 2Bc) and encodes several distinct zinc-finger-containing isoforms (Z1 to Z4). Using isoform-specific polyclonal antibodies we observe in the fat body a switch in BR-C isoform expression from the Z2 to the other three isoforms during the third instar.

View Article and Find Full Text PDF

Metamorphosis in holometabolous insects is an ecdysone-dependent process by which the larval form is replaced by a reproductive, adult form. At the onset of metamorphosis ecdysone induces a set of early genes which coordinate tissue-specific responses to hormone. The Broad-Complex (BR-C) early gene, which acts as a global regulator of tissue-specific responses to ecdysone, encodes a family of zinc-finger DNA binding proteins known as Z1, Z2, Z3, and Z4.

View Article and Find Full Text PDF

Integrins are evolutionarily conserved transmembrane alpha,beta heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion.

View Article and Find Full Text PDF

The Broad-Complex, a 20-hydroxyecdysone-regulated gene, is essential for the development of many tissues during metamorphosis. In Broad-Complex mutants of the rbp complementation group, dorsoventral indirect flight muscles (DVM) are largely absent, and the dorsal longitudinal indirect flight muscles, tergotrochanteral muscles, and remaining DVM often select incorrect attachment sites. The Broad-Complex encodes a family of zinc-finger-containing transcription factors, and it is hypothesized that Broad Complex proteins containing the Z1 zinc-finger pair (BRC-Z1) mediate rbp+ function.

View Article and Find Full Text PDF

IMP-L3, a gene isolated as a potential mediator of imaginal disc morphogenesis in Drosophila melanogaster, encodes lactate dehydrogenase (LDH). The predicted amino acid sequence of IMP-L3 is 58-61% identical to those of human LDHs. In cultured imaginal discs, IMP-L3 transcript levels and LDH enzyme activity increase in response to the steroid hormone, 20-hydroxyecdysone.

View Article and Find Full Text PDF

The ensemble of tissue-specific changes that drives Drosophila metamorphosis is initiated by the steroid hormone ecdysone and proceeds through a transcriptional cascade comprised of primary response transcriptional regulators and secondary response structural genes. The Broad-Complex (BR-C) primary response early gene is composed of several distinct genetic functions and encodes a family of related transcription factor isoforms. Our objective in this study was to determine whether individual BR-C isoforms directly regulate secondary response target genes.

View Article and Find Full Text PDF

The Broad-Complex (BR-C) is a key member of the 20-hydroxyecdysone regulatory hierarchy that coordinates changes in gene expression during Drosophila metamorphosis. The family of transcription factors encoded by the BR-C share a common amino-terminal domain which is fused by alternative splicing to one of four pairs of C2H2 zinc-finger domains (Z1, Z2, Z3, and Z4). In this study, we examine the temporal expression of transcripts encoding each BR-C zinc-finger isoform-including the newly discovered fourth zinc-finger domain-during the metamorphosis of imaginal discs which form the integumental structures of the adult head and thorax.

View Article and Find Full Text PDF

Epithelial development dictates the shape of an organism. The metamorphic development of a Drosophila leg precursor into an adult leg is a well-defined example of epithelial morphogenesis that can be analyzed from the perspectives of genetics and molecular and cell biology. The steroid hormone 20-hydroxyecdysone induces and regulates the entire process.

View Article and Find Full Text PDF

We have characterized the blistered (bs) locus phenotypically, genetically and developmentally using a set of new bs alleles. Mutant defects range from wings with ectopic veins and intervein blisters to completely ballooned wings where the distinction between vein and intervein is lost. Mosaic analyses show that severe bs alleles behave largely autonomously; homozygous patches having vein-like properties.

View Article and Find Full Text PDF

The Drosophila IMP-L2 gene was identified as a 20-hydroxyecdysone-induced gene encoding a membrane-bound polysomal transcript. IMP-L2 is an apparent secreted member of the immunoglobulin superfamily. We have used deficiencies that remove the IMP-L2 gene to demonstrate that IMP-L2 is essential in Drosophila.

View Article and Find Full Text PDF

The Stubble-stubbloid (Sb-sbd) gene is required for hormone-dependent epithelial morphogenesis of imaginal discs of Drosophila, including the formation of bristles, legs, and wings. The gene has been cloned by using Sb-sbd-associated DNA lesions in a 20-kilobase (kb) region of a 263-kb genomic walk. The region specifies an approximately 3.

View Article and Find Full Text PDF

Breakdown of basement membranes is an important step in the controlled rearrangement of cells during metamorphosis, cell migration, and metastatic spread of tumor cells. One of our two laboratories found a unique collagenous peptide that only appears during metamorphosis of Drosophila melanogaster. The other laboratory previously reported that during 20-hydroxyecdysone-induced eversion of Drosophila imaginal discs a glycoprotein named gp125 arises (Birr et al.

View Article and Find Full Text PDF

We first summarize wing development during metamorphosis of Drosophila and identify four critical steps in the conversion of a folded single layered wing disc to a flat bilayered wing. Each step occurs twice, once during the 12 hour prepupal period and again during the 84 hour pupal period. (1) Apposition in which basal surfaces of dorsal and ventral epithelia come close together.

View Article and Find Full Text PDF

The Broad-Complex (BR-C) is essential for metamorphosis in Drosophila melanogaster. This locus is coextensive with the 2B5 ecdysone-responsive early puff and is necessary for puffing and transcription of many subsequently activated late genes in the developing salivary gland. Mapping of 31 cDNA clones indicates that approximately 100 kb of the genome is devoted to the synthesis of many BR-C RNAs.

View Article and Find Full Text PDF

Transcripts of ecdysone-dependent genes (EDGs) accumulate in isolated imaginal discs with 8 hr after exposure to a pulse of the steroid hormone 20-hydroxyecdysone (20-HE; 1 microgram/ml for 6 hr) but not in discs cultured in the continuous presence or absence of the hormone. Sequence analyses show that two of the EDGs are members of gene families encoding insect cuticle proteins. We conclude that a third EDG encodes a cuticle protein because the conceptual glycine-rich protein contains sequence motifs similar to those found in insect egg shell proteins and vertebrate cytokeratins and because expression of this gene is limited to tissues that deposit the pupal cuticle.

View Article and Find Full Text PDF

The Broad-Complex (BR-C) is a complex regulatory locus at 2B-5 on the X chromosome of Drosophila melanogaster. The wild-type BR-C products are apparent transcription factors necessary for imaginal disc morphogenesis. Alleles of the Stubble-stubbloid (Sb-sbd) locus at 89B9-10 act as dominant enhancers of broad alleles of the BR-C.

View Article and Find Full Text PDF

Imaginal discs of Drosophila are simple epithelial tissues that undergo dramatic changes in shape during metamorphosis, including elongation to form adult appendages such as legs and wings. We have examined the cellular basis of leg disc morphogenesis by staining filamentous actin to outline cell boundaries in discs and observing cell shapes with scanning confocal laser microscopy (SCLM). Surprisingly, we found that prior to the onset of morphogenesis, cells in the dorsal-lateral regions of leg discs are compressed in the proximal-distal axis and greatly elongated circumferentially.

View Article and Find Full Text PDF

An apical surface glycoprotein, designated gp125 for its apparent molecular weight of 125,000, appears in Ca2(+)-free, ionic detergent extracts of imaginal discs of Drosophila melanogaster in response to the steroid hormone, 20-hydroxyecdysone (20-HE). Gp125 is not synthesized in response to 20-HE, but results from modification of an existing macromolecule. Treatment of discs or larval epidermis with serine protease (e.

View Article and Find Full Text PDF

During metamorphosis, the steroid hormone 20-hydroxyecdysone induces morphogenesis of imaginal discs, including the formation of appendages. IMP-E2 is an ecdysone-dependent, single-copy Drosophila gene, whose transcripts accumulate rapidly in imaginal discs in response to the hormone. The IMP-E2 product is secreted at the apical surface of the disc epithelium in association with disc morphogenesis.

View Article and Find Full Text PDF

The steroid hormone 20-hydroxyecdysone (20-HE) induces imaginal discs to form adult appendages in Drosophila. We have isolated a set of six ecdysone-responsive genes that apparently encode disc cell-surface or secreted proteins. Transcripts from one of these genes, IMP-E3, accumulate rapidly within 1-2 h in response to hormone.

View Article and Find Full Text PDF

The components of the pupal cuticle are the main differentiation products synthesized by both the larval and adult epidermis during the prepupal period of Drosophila development. The pupal cuticle is formed in vitro by imaginal discs in response to a 6 h pulse of 20-hydroxyecdysone (20-HE). We previously described the isolation and initial characterization of four ecdysone-dependent genes (EDGs) whose expression in imaginal discs occurs only in response to a pulse of 20-HE.

View Article and Find Full Text PDF

Genes that encode 3rd instar larval cuticle proteins (LCP's) of Drosophila melanogaster are located in at least two chromosomal sites. The genes encoding four of the five predominant LCP's are located in a cluster at the chromosomal region 44D. They are organized in pairs that are transcribed divergently, and expressed with different timing during the third larval instar.

View Article and Find Full Text PDF