Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water.
View Article and Find Full Text PDFIn stands with a broad range of diameters, a small number of very large trees can disproportionately influence stand basal area and transpiration (Et). Sap flow-based Et estimates may be particularly sensitive to large trees due to nonlinear relationships between tree-level water use (Q) and tree diameter at breast height (DBH). Because Q is typically predicted on the basis of DBH and sap flow rates measured in a subset of trees and then summed to obtain Et, we assessed the relative importance of DBH and sap flow variables (sap velocity, Vs, and sapwood depth, Rs) in determining the magnitude of Et and its dependence on large trees in a tropical montane forest ecosystem.
View Article and Find Full Text PDFThe ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species.
View Article and Find Full Text PDF