In the course of their life, plants continuously experience a wide range of unfavourable environmental conditions in the form of biotic and abiotic stress factors. The perception of stress via various organelles and rapid, tailored cellular responses are essential for the establishment of plant stress resilience. Mitochondria as the biosynthetic sites of energy equivalents in the form of ATP-provided in order to enable a multitude of biological processes in the cell-are often directly impacted by external stress factors.
View Article and Find Full Text PDFFaced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure.
View Article and Find Full Text PDFFlooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated.
View Article and Find Full Text PDFCurrent climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive.
View Article and Find Full Text PDFAerobic reactions are essential to sustain plant growth and development. Impaired oxygen availability due to excessive water availability, e.g.
View Article and Find Full Text PDFThe spinal trigeminal nucleus caudalis (SpVc) in the mammalian brainstem serves a pivotal function in pain processing. As the main relay center for nociceptive signals, SpVc conducts pain-related signals from various regions of the head toward higher levels of central processing such as the thalamus. SpVc also receives modulatory signals from other brain areas, which can alleviate the perception of headache.
View Article and Find Full Text PDFModulation of neuronal excitability is a prominent way of shaping the activity of neuronal networks. Recent studies highlight the role of calcium-activated chloride currents in this context, as they can both increase or decrease excitability. The calcium-activated chloride channel Anoctamin 2 (ANO2 alias TMEM16B) has been described in several regions of the mouse brain, including the olivo-cerebellar system.
View Article and Find Full Text PDFOlfactory and trigeminal chemosensory systems reside in parallel within the mammalian nose. Psychophysical studies in people indicate that these two systems interact at a perceptual level. Trigeminal sensations of pungency mask odour perception, while olfactory stimuli can influence trigeminal signal processing tasks such as odour localization.
View Article and Find Full Text PDFPeptides released from trigeminal fibers fulfill well-understood functions in neuroinflammatory processes and in the modulation of nociceptive signal processing. In particular, calcitonin gene-related peptide (CGRP) and substance P (SP), released from afferent nerve terminals, exert paracrine effects on the surrounding tissue and this has been recently highlighted by the prominent parcrine role of CGRP in the development of headache and migraine. Some recent communications suggest that these sensory neuropeptides may also modulate the workings of sensory organs and influence afferent signals from nose, tongue, eyes and ears.
View Article and Find Full Text PDFPhysiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca-dependent Cl secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca-gated Cl channels are known to contribute to calcium-dependent Cl secretion in tracheal and bronchial epithelia.
View Article and Find Full Text PDFMany animals follow odor trails to find food, nesting sites, or mates, and they require only faint olfactory cues to do so. The performance of a tracking dog, for instance, poses the question on how the animal is able to distinguish a target odor from the complex chemical background around the trail. Current concepts of odor perception suggest that animals memorize each odor as an olfactory object, a percept that enables fast recognition of the odor and the interpretation of its valence.
View Article and Find Full Text PDFTransport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca- dependent and cAMP- dependent Cl secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca-gated Cl channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel, the epithelial Na channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium.
View Article and Find Full Text PDFNeurons communicate through excitatory and inhibitory synapses. Both lines of communication are adjustable and allow the fine tuning of signal exchange required for learning processes in neural networks. Several distinct modes of plasticity modulate glutamatergic and GABAergic synapses in Purkinje cells of the cerebellar cortex to promote motor control and learning.
View Article and Find Full Text PDFChemosensation in the mammalian nose comprises detection of odorants, irritants and pheromones. While the traditional view assigned one distinct sub-system to each stimulus type, recent research has produced a more complex picture. Odorants are not only detected by olfactory sensory neurons but also by the trigeminal system.
View Article and Find Full Text PDFKey Points: In olfactory research it is difficult to deliver stimuli with defined intensity and duration to olfactory sensory neurons. Expression of channelrhodopsin 2 (ChR2) in olfactory sensory neurons provides a means to activate these neurons with light flashes. Appropriate mouse models are available.
View Article and Find Full Text PDFCalcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum.
View Article and Find Full Text PDFInsights into tumour biology of breast cancer have led the path towards the introduction of targeted treatment approaches; still, breast cancer-related mortality remains relatively high. Efforts in the field of basic research revealed new druggable targets which now await validation within the context of clinical trials. Therefore, questions concerning the optimal design of future studies are becoming even more pertinent.
View Article and Find Full Text PDFCalcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F).
View Article and Find Full Text PDFPurpose: In the vertebrate retina, calcium-activated chloride channels are expressed in photoreceptor synaptic terminals. These channels are involved in the control of transmitter release in the dark. The search for their molecular identity has recently lead to the localization of the protein anoctamin 2 (also TMEM16B) in the outer plexiform layer of the rodent retina.
View Article and Find Full Text PDFThe mammalian olfactory epithelium contains olfactory receptor neurons and trigeminal sensory endings. The former mediate odor detection, the latter the detection of irritants. The two apparently parallel chemosensory systems are in reality interdependent in various well-documented ways.
View Article and Find Full Text PDFIn the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved, if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time.
View Article and Find Full Text PDFCalcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca(2+). Two family members,ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose.
View Article and Find Full Text PDFCyclic nucleotide-gated (CNG) channels operate as transduction channels in photoreceptors and olfactory receptor neurons. Direct binding of cGMP or cAMP opens these channels which conduct a mixture of monovalent cations and Ca(2+). Upon activation, CNG channels generate intracellular Ca(2+) signals that play pivotal roles in the transduction cascades of the visual and olfactory systems.
View Article and Find Full Text PDF