Publications by authors named "Frigyes Samuel Racz"

Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed.

View Article and Find Full Text PDF

Riemannian geometry-based classification (RGBC) gained popularity in the field of brain-computer interfaces (BCIs) lately, due to its ability to deal with non-stationarities arising in electroencephalography (EEG) data. Domain adaptation, however, is most often performed on sample covariance matrices (SCMs) obtained from EEG data, and thus might not fully account for components affecting covariance estimation itself, such as regional trends. Detrended cross-correlation analysis (DCCA) can be utilized to estimate the covariance structure of such signals, yet it is computationally expensive in its original form.

View Article and Find Full Text PDF

Subject training is crucial for acquiring brain-computer interface (BCI) control. Typically, this requires collecting user-specific calibration data due to high inter-subject neural variability that limits the usability of generic decoders. However, calibration is cumbersome and may produce inadequate data for building decoders, especially with naïve subjects.

View Article and Find Full Text PDF

Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.

View Article and Find Full Text PDF

Analysis of brain functional connectivity (FC) could provide insight in how and why cognitive functions decline even in healthy aging (HA). Despite FC being established as fluctuating over time even in the resting state (RS), dynamic functional connectivity (DFC) studies involving healthy elderly individuals and assessing how these patterns relate to cognitive performance are yet scarce. In our recent study we showed that fractal temporal scaling of functional connections in RS is not only reduced in HA, but also predicts increased response latency and reduced task solving accuracy.

View Article and Find Full Text PDF

Dopaminergic treatment (DT), the standard therapy for Parkinson's disease (PD), alters the dynamics of functional brain networks at specific time scales. Here, we explore the scale-free functional connectivity (FC) in the PD population and how it is affected by DT. We analyzed the electroencephalogram of: (i) 15 PD patients during DT (ON) and after DT washout (OFF) and (ii) 16 healthy control individuals (HC).

View Article and Find Full Text PDF

Aging affects cognitive functions even in the absence of ongoing pathologies. The neurophysiological basis of age-related cognitive decline (CD), however, is not completely understood. Alterations in both functional brain connectivity and in the fractal scaling of neuronal dynamics have been linked to aging and cognitive performance.

View Article and Find Full Text PDF

Background: Aging is a major risk factor for a range of chronic diseases. Oxidative stress theory of aging has been previously proposed as one of the mechanisms responsible for the age-related decline in organ/tissue function and the development of age-related diseases. Urine contains rich biological information on the health status of every major organ system and can be an important noninvasive source for biomarkers of systemic oxidative stress in aging.

View Article and Find Full Text PDF

Assessing power-law cross-correlations between a pair - or among a set - of processes is of great significance in diverse fields of analyses ranging from neuroscience to financial markets. In most cases such analyses are computationally expensive and thus carried out offline once the entire signal is obtained. However, many applications - such as mental state monitoring or financial forecasting - call for fast algorithms capable of estimating scale-free coupling in real time.

View Article and Find Full Text PDF

The human brain consists of anatomically distant neuronal assemblies that are interconnected via a myriad of synapses. This anatomical network provides the neurophysiological wiring framework for functional connectivity (FC), which is essential for higher-order brain functions. While several studies have explored the scale-specific FC, the scale-free (i.

View Article and Find Full Text PDF

Sleep deprivation (SD) is known to be associated with decreased cognitive performance; however, the underlying mechanisms are poorly understood. As interactions between distinct brain regions depend on mental state, functional brain networks established by these connections typically show a reorganization during task. Hence, analysis of functional connectivity (FC) could reveal the task-related change in the examined frontal brain networks.

View Article and Find Full Text PDF

Dynamic interdependencies within and between physiological systems and subsystems are key for homeostatic mechanisms to establish an optimal state of the organism. These interactions mediate regulatory responses elicited by various perturbations, such as the high-pressure baroreflex and cerebral autoregulation, alleviating the impact of orthostatic stress on cerebral hemodynamics and oxygenation. The aim of this study was to evaluate the responsiveness of the cardiorespiratory-cerebrovascular networks by capturing linear and nonlinear interdependencies to postural changes.

View Article and Find Full Text PDF

While most connectivity studies investigate functional connectivity (FC) in a scale-dependent manner, coupled neural processes may also exhibit broadband dynamics, manifesting as power-law scaling of their measures of interdependence. Here we introduce the bivariate focus-based multifractal (BFMF) analysis as a robust tool for capturing such scale-free relations and use resting-state electroencephalography (EEG) recordings of 12 subjects to demonstrate its performance in reconstructing physiological networks. BFMF was employed to characterize broadband FC between 62 cortical regions in a pairwise manner, with all investigated connections being tested for true bivariate multifractality.

View Article and Find Full Text PDF

Introduction: Alterations in narrow-band spectral power of electroencephalography (EEG) recordings are commonly reported in patients with schizophrenia (SZ). It is well established however that electrophysiological signals comprise a broadband scale-free (or fractal) component generated by mechanisms different from those producing oscillatory neural activity. Despite this known feature, it has not yet been investigated if spectral abnormalities found in SZ could be attributed to scale-free or oscillatory brain function.

View Article and Find Full Text PDF

Introduction: Investigating how the brain adapts to increased mental workload through large-scale functional reorganization appears as an important research question. Functional connectivity (FC) aims at capturing how disparate regions of the brain dynamically interact, while graph theory provides tools for the topological characterization of the reconstructed functional networks. Although numerous studies investigated how FC is altered in response to increased working memory (WM) demand, current results are still contradictory as few studies confirmed the robustness of these findings in a low-density setting.

View Article and Find Full Text PDF

Dynamic functional connectivity (DFC) was established in the past decade as a potent approach to reveal non-trivial, time-varying properties of neural interactions - such as their multifractality or information content -, that otherwise remain hidden from conventional static methods. Several neuropsychiatric disorders were shown to be associated with altered DFC, with schizophrenia (SZ) being one of the most intensely studied among such conditions. Here we analyzed resting-state electroencephalography recordings of 14 SZ patients and 14 age- and gender-matched healthy controls (HC).

View Article and Find Full Text PDF

Functional connectivity of the brain fluctuates even in resting-state condition. It has been reported recently that fluctuations of global functional network topology and those of individual connections between brain regions expressed multifractal scaling. To expand on these findings, in this study we investigated if multifractality was indeed an inherent property of dynamic functional connectivity (DFC) on the regional level as well.

View Article and Find Full Text PDF

Assessing the functional connectivity (FC) of the brain has proven valuable in enhancing our understanding of brain function. Recent developments in the field demonstrated that FC fluctuates even in the resting state, which has not been taken into account by the widely applied static approaches introduced earlier. In a recent study using functional near-infrared spectroscopy (fNIRS) global dynamic functional connectivity (DFC) has also been found to fluctuate according to scale-free i.

View Article and Find Full Text PDF

Unlabelled: Brain function is organized as a network of functional connections between different neuronal populations with connection strengths dynamically changing in time and space. Studies investigating functional connectivity (FC) usually follow a static approach when describing FC by considering the connectivity strengths constant, however a dynamic approach seems more reasonable, as this way the spatio-temporal dynamics of the underlying system can also be captured.

Objective: The scale-free, i.

View Article and Find Full Text PDF

In this study, functional near-infrared spectroscopy (fNIRS) and the graph theory approach were used to access the functional connectivity (FC) of the prefrontal cortex (PFC) in a resting state and during increased mental workload. For this very purpose, a pattern recognition-based test was developed, which elicited a strong response throughout the PFC during the test condition. FC parameters obtained during stimulation were found increased compared to those in a resting state after correlation based signal improvement (CBSI), which can attenuate those components of fNIRS signals which are unrelated to neural activity.

View Article and Find Full Text PDF