Publications by authors named "Fries P"

Experiments in visual cortex have shown that the firing rate of a neuron in response to the simultaneous presentation of a preferred and non-preferred stimulus within the receptive field is intermediate between that for the two stimuli alone (stimulus competition). Attention directed to one of the stimuli drives the response towards the response induced by the attended stimulus alone (selective attention). This study shows that a simple feedforward model with fixed synaptic conductance values can reproduce these two phenomena using synchronization in the gamma-frequency range to increase the effective synaptic gain for the responses to the attended stimulus.

View Article and Find Full Text PDF

The enhancement of the spin-lattice relaxation rate for nuclear spins in a ligand bound to a paramagnetic metal ion [known as the paramagnetic relaxation enhancement (PRE)] arises primarily through the dipole-dipole (DD) interaction between the nuclear spins and the electron spins. In solution, the DD interaction is modulated mostly by reorientation of the nuclear spin-electron spin axis and by electron spin relaxation. Calculations of the PRE are in general complicated, mainly because the electron spin interacts so strongly with the other degrees of freedom that its relaxation cannot be described by second-order perturbation theory or the Redfield theory.

View Article and Find Full Text PDF

In magnetic resonance imaging (MRI), cerebral blood volume (CBV) quantification is dependent on the MRI sequence and on the properties of the contrast agents (CAs). By using the rapid steady-state T(1) method, we show the potential of gadolinium per (3,6-anhydro) alpha-cyclodextrin (Gd-ACX), a new MRI paramagnetic CA (inclusion complex of Gd(3+) with per (3,6-anhydro)-alpha-cyclodextrin), for the CBV quantification in the presence of blood-brain barrier lesions. After biocompatibility and relaxivity experiments, in vivo experiments on rats were performed on a C6 tumor model with 0.

View Article and Find Full Text PDF

The tripodal hexadentate picolinate ligand dpaa3- (H3dpaa=N,N'-bis[(6-carboxypyridin-2-yl)methyl]glycine) has been synthesised. It can form 1:1 and 1:2 lanthanide/ligand complexes. The crystal structure of the bis(aquo) lutetium complex [Lu(dpaa)(H2O)2] has been determined by X-ray diffraction studies.

View Article and Find Full Text PDF

Brain processing depends on the interactions between neuronal groups. Those interactions are governed by the pattern of anatomical connections and by yet unknown mechanisms that modulate the effective strength of a given connection. We found that the mutual influence among neuronal groups depends on the phase relation between rhythmic activities within the groups.

View Article and Find Full Text PDF

Activated neuronal groups typically engage in rhythmic synchronization in the gamma-frequency range (30-100 Hz). Experimental and modeling studies demonstrate that each gamma cycle is framed by synchronized spiking of inhibitory interneurons. Here, we review evidence suggesting that the resulting rhythmic network inhibition interacts with excitatory input to pyramidal cells such that the more excited cells fire earlier in the gamma cycle.

View Article and Find Full Text PDF

The relaxation of the electronic spin S of a paramagnetic metal ion with fully quenched orbital angular momentum in its ground state is investigated in an external magnetic field through a systematic study of the time correlation functions governing the evolution of the statistical operator (density matrix). Let omega0 be the Larmor angular frequency of S. When the relaxation is induced by a time-fluctuating perturbing Hamiltonian hH1(t) of time correlation tauc, it is demonstrated that after a transient period the standard Redfield approximation is relevant to calculate the evolution of the populations of the spin states if parallelH1 parallel2tauc2/(1+omega0(2)tauc2)<<1 and that this transient period becomes shorter than tauc at sufficiently high field for a zero-field splitting perturbing Hamiltonian.

View Article and Find Full Text PDF

A person's ability to detect a weak visual target stimulus varies from one viewing to the next. We tested whether the trial-to-trial fluctuations of neural population activity in the human brain are related to the fluctuations of behavioral performance in a "yes-no" visual motion-detection task. We recorded neural population activity with whole head magnetoencephalography (MEG) while subjects searched for a weak coherent motion signal embedded in spatiotemporal noise.

View Article and Find Full Text PDF

Many important questions in neuroscience are about interactions between neurons or neuronal groups. These interactions are often quantified by coherence, which is a frequency-indexed measure that quantifies the extent to which two signals exhibit a consistent phase relation. In this paper, we consider the statistical testing of the difference between coherence values observed in two experimental conditions.

View Article and Find Full Text PDF

Biliary cystadenoma is a rare epithelial cystic neoplasm representing only 5% of intrahepatic cystic lesions of biliary origin. Commonly, the lesions are solitary cystic structures with multiple thin-walled septa predominantly arising from the right hepatic duct. Although the lesions are generally intrahepatic, extrahepatic tumors have been reported.

View Article and Find Full Text PDF

Groups of neurons synchronize their activities during a variety of conditions, but whether this synchronization is functionally relevant has remained a matter of debate. Here, we survey recent findings showing that synchronization is dynamically modulated during cognitive processes. Based on this evidence, synchronization appears to reflect a general mechanism that renders interactions among selective subsets of neurons effective.

View Article and Find Full Text PDF

Attention selectively enhances the influence of neuronal responses conveying information about relevant sensory attributes. Accumulating evidence suggests that this selective neuronal modulation relies on rhythmic synchronization at local and long-range spatial scales: attention selectively synchronizes the rhythmic responses of those neurons that are tuned to the spatial and featural attributes of the attended sensory input. The strength of synchronization is thereby functionally related to perceptual accuracy and behavioural efficiency.

View Article and Find Full Text PDF

The ability to directly detect neuronal magnetic fields by MRI would help investigators achieve the "holy grail" of neuroimaging, namely both high spatial and temporal resolution. Both positive and negative findings have been reported in the literature, with no clear consensus as to the feasibility of direct detection. The aim of this study was to replicate one of the most promising published in vivo results.

View Article and Find Full Text PDF

We applied magnetoencephalography (MEG) to record oscillatory brain activity from human subjects engaged in planning a double-step saccade. In the experiments, subjects (n = 8) remembered the locations of 2 sequentially flashed targets (each followed by a 2-s delay), presented in either the left or right visual hemifield, and then made saccades to the 2 locations in sequence. We examined changes in spectral power in relation to target location (left or right) and memory load (one or two targets), excluding error trials based on concurrent eye tracking.

View Article and Find Full Text PDF

The purpose of this study was to obtain a better understanding of neuronal responses to correlated input, in particular focusing on the aspect of synchronization of neuronal activity. The first aim was to obtain an analytical expression for the coherence between the output spike train and correlated input and for the coherence between output spike trains of neurons with correlated input. For Poisson neurons, we could derive that the peak of the coherence between the correlated input and multi-unit activity increases proportionally with the square root of the number of neurons in the multi-unit recording.

View Article and Find Full Text PDF

Amodal completion refers to the process in the visual system that enables us to perceive partly occluded objects as whole objects. Both the overall shape of a visual object (global aspect) and the region immediately surrounding the occluder (local aspect) are known to determine the process of completion. We investigated the influence of overall shape context in completion on human brain activity using MEG recordings.

View Article and Find Full Text PDF

The relative diffusion coefficient D of a paramagnetic species and a diamagnetic probe molecule bearing nuclear spins is obtained from their measured relaxation times T1 and T2 (or T1rho). This is achieved by introducing the longitudinal relaxivity, r1, a linear expression of 1/T1, and the mixed relaxivity, rmix, a linear expression of 1/T1 and 1/T2 (or 1/T1rho). Under weak assumptions, D is proportional to (rmix - r1) to the power -2/3 and to rmix to the power -1, with easy-to-determine proportionality factors.

View Article and Find Full Text PDF

The new potentially octadentate ligand, 1-(carboxymethyl)-4,7-bis[(6-carboxypyridin-2-yl)methyl]-1,4,7-triazacyclononane (H(3)bpatcn), in which two picolinate arms and one acetate arm are connected to the 1,4,7-triazacyclonane core, has been prepared. Potentiometric studies show an increased stability of the Gd(III) complex of H(3)bpatcn (logK(GdL)=15.8(2)) with respect to the Gd(III) complex of the analogous ligand 1,4,7-triazacyclononane-N,N',N''-triacetic acid (H(3)nota) (logK(GdL)=13.

View Article and Find Full Text PDF

A central goal in systems neuroscience is to understand how the brain encodes the intensity of sensory features. We used whole-head magnetoencephalography to investigate whether frequency-specific neuronal activity in the human visual cortex is systematically modulated by the intensity of an elementary sensory feature such as visual motion. Visual stimulation induced a tonic increase of neuronal activity at frequencies above 50 Hz.

View Article and Find Full Text PDF

We investigated the effects of spatial-selective attention on oscillatory neuronal dynamics in a tactile delayed-match-to-sample task. Whole-head magnetoencephalography was recorded in healthy subjects while dot patterns were presented to their index fingers using Braille stimulators. The subjects' task was to report the reoccurrence of an initially presented sample pattern in a series of up to eight test stimuli that were presented unpredictably to their right or left index finger.

View Article and Find Full Text PDF

The time correlation functions (TCFs) G(alphaalpha(t)[triple bond](Salpha(t)Salpha(0)) (alpha = x,y,z) of the electronic spin components of a complexed paramagnetic metal ion give information about the time fluctuations of its zero-field splitting (ZFS) Hamiltonian due to the random dynamics of the coordination polyhedron. These TCFs reflect the electronic spin relaxation which plays an essential role in the inner- and outer-sphere paramagnetic relaxation enhancements of the various nuclear spins in solution. When a static ZFS Hamiltonian is allowed by symmetry, its modulation by the random rotational motion of the complex has a great influence on the TCFs.

View Article and Find Full Text PDF

Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40-70 Hz).

View Article and Find Full Text PDF

Plain film radiographs represent the imaging of choice for the initial evaluation of pathologies of the hip. However, many lesions of the joint itself and surrounding soft tissues are often not visualized by conventional radiographs. Magnetic resonance imaging (MRI) demonstrates most of these pathologies with high sensitivity and specificity.

View Article and Find Full Text PDF

The relaxation of electronic spins S of paramagnetic species is studied by the field-dependence of the longitudinal, transverse, and longitudinal in the rotating frame relaxation rates R1, R2, and R1rho of nuclear spins I carried by dissolved probe solutes. The method rests on the model-independent low-frequency dispersions of the outer-sphere (OS) paramagnetic relaxation enhancement (PRE) of these rates due to the three-dimensional relative diffusion of the complex with respect to the probe solute. We propose simple analytical formulas to calculate these enhancements in terms of the relative diffusion coefficient D, the longitudinal electronic relaxation time T1e, and the time integral of the time correlation function of the I-S dipolar magnetic interaction.

View Article and Find Full Text PDF

Neuronal gamma-band (30-100 Hz) synchronization subserves fundamental functions in neuronal processing. However, different experimental approaches differ widely in their success in finding gamma-band activity. We aimed at linking animal and human studies of gamma-band activity and at preparing optimized methods for an in-depth investigation of the mechanisms and functions of gamma-band activity and gamma-band coherence in humans.

View Article and Find Full Text PDF