Publications by authors named "Friedrich-Wilhelm Bach"

The principle of biodegradation for the production of temporary implant materials (e.g. stents) plays an important role in the treatment of congenital heart defects.

View Article and Find Full Text PDF

The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device.

View Article and Find Full Text PDF

Background: The purpose of this study was to develop a new fixation technique for the treatment of periprosthetic fractures using intraprosthetic screw fixation. The goal was to biomechanically evaluate the increase in primary fixation stability compared to unicortical locked-screw plating.

Methods: A Vancouver C periprosthetic fracture was simulated in femur prosthesis constructs.

View Article and Find Full Text PDF

Synthetic or biological patch materials used for surgical myocardial reconstruction are often fragile. Therefore, a transient support by degradable magnesium scaffolds can reduce the risk of dilation or rupture of the patch until physiological remodeling has led to a sufficient mechanical durability. However, there is evidence that magnesium implants can influence the growth and physiological behavior of the host's cells and tissue.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the different temperature levels whilst drilling cemented and cementless hip prostheses implanted in bovine femora, and to evaluate the insulating function of the cement layer.

Methods: Standard hip prostheses were implanted in bovine donor diaphyses, with or without a cement layer. Drilling was then performed using high-performance-cutting drills with a reinforced core, a drilling diameter of 5.

View Article and Find Full Text PDF

The present work aimed to investigate the influence of acetone and formalin as well as the duration and type of storage on magnesium based implants by means of microscopic, μ-computed tomographic, scanning electron microscopic, EDX and metallographic investigations. In contrast to storing in acetone, storage in formalin led to an increase in surface to volume ratio, and a decrease of the volume and the density. The various types of storage exerted no differing effects on the implants but with increasing storage duration, a spreading of oxygen rich areas on the surface, increased precipitations and a decrease in grain size could be observed.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to evaluate the different temperature levels while drilling solid materials and to compare different cooling solutions for possible temperature control. An additional purpose was to develop an internal cooling device which can be connected to routinely used manual drilling devices in trauma surgery.

Methods: Drilling was performed on a straight hip stem implanted in bovine femora without cooling, with externally applied cooling and with a newly developed internal cooling device.

View Article and Find Full Text PDF

Calcium phosphate cements are brittle biomaterials of low bending strength. One promising approach to improve their mechanical properties is reinforcement with fibers. State of the art degradable reinforced composites contain fibers made of polymers, resorbable glass or whiskers of calcium minerals.

View Article and Find Full Text PDF

In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses.

View Article and Find Full Text PDF

Aim: To develop new fixation techniques for the treatment of periprosthetic fractures using intraprosthetic screw fixation with inserted threaded liners.

Methods: A Vancouver B1 periprosthetic fracture was simulated in femur prosthesis constructs using sawbones and cemented regular straight hip stems. Fixation was then performed with either unicortical locked-screw plating using the less invasive stabilization system-plate or with intraprosthetic screw fixation using inserted liners.

View Article and Find Full Text PDF

The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years.

View Article and Find Full Text PDF

A small animal model was established to evaluate the potential of iron as a degradable implant material. After insertion into the tail of mice, the implants gradually degraded over a clinically relevant time period of several months. Histological analysis and gene expression data from whole-genome microarray analyses indicated a limited inflammatory reaction.

View Article and Find Full Text PDF

Background: In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery.

Methods: ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate.

View Article and Find Full Text PDF

Material adapted repair technologies for fiber-reinforced polymers with thermosetting matrix systems are currently characterized by requiring major efforts for repair preparation and accomplishment in all industrial areas of application. In order to allow for a uniform distribution of material and geometrical parameters over the repair zone, a novel composite interlock repair concept is introduced, which is based on a repair zone with undercuts prepared by water-jet technology. The presented numerical and experimental sensitivity analyses make a contribution to the systematic development of the interlock repair technology with respect to material and geometrical factors of influence.

View Article and Find Full Text PDF

The aim of this investigation was to determine the influence of simulated ageing on the tetragonal-to-monoclinic phase transformation and on the flexural strength of a 3Y-TZP ceramic, compared to alumina toughened zirconia (ATZ) and ceria-stabilized zirconia (12Ce-TZP). Standardized disc specimens of each material were hydrothermally aged in steam at 134°C and 3bar for 0, 16, 32, 64 or 128h. The phase transformation was determined by X-ray diffraction (XRD) and atomic force microscopy.

View Article and Find Full Text PDF

Purposes: The aim of this study was to assess the effect of differences in the thermal expansion behaviour of veneering ceramics on the adhesion to Y-TZP, using a fracture mechanics approach.

Methods: Seven veneering ceramics (VM7, VM9, VM13, Lava Ceram, Zirox, Triceram, Allux) and one Y-TZP ceramic were investigated. Thermal expansion coefficients and glass transition temperatures were determined to calculate residual stresses (σ(R), MPa) between core and veneer.

View Article and Find Full Text PDF

Purpose: Being biodegradable, magnesium is considered a promising future implant material but very little is known about the biocompatibility for the tissues in direct contact with it. In this study, the degradation of pure magnesium implants in the skin of an isolated bovine udder was examined over a period of five hours.

Methods: Microdialysis technique was used in order to investigate the reactions at the interface of implant and tissue.

View Article and Find Full Text PDF

Low temperature degradation and mechanical and thermal cycling may decrease the strength of zirconia and jeopardize the long-term success of dental restorations made of this material. The objective of this study was to reveal the influence of different environmental and loading conditions on the strength of 3 mol.% yttria-stabilized polycrystalline tetragonal zirconia (3Y-TZP).

View Article and Find Full Text PDF

Slow cooling firing schedules have recently been introduced by some manufacturers to reduce chipping complications in zirconia-based core/veneer composites. The aim of this study was to test the hypothesis that these firing schedules may influence the bond strength between the zirconia core and veneering ceramic. Four different veneering ceramics recommended for zirconia (Lava Ceram, Triceram, VM9 and Zirox) were fired onto rectangular shaped Y-TZP specimens (Lava Frame) and cooled using a rapid or a slow cooling rate.

View Article and Find Full Text PDF

Recently, corrodible magnesium-based alloys have been introduced for use as cardiovascular stents and orthopedic implants. However, rapid corrosion rates have raised questions about their biocompatibility. Therefore, we developed a binary fluoride-coated magnesium-calcium alloy with improved degradation kinetics.

View Article and Find Full Text PDF

Purpose: The aim of the present study was to establish a noninvasive method for quantitative analysis of supra- and subgingival biofilm formation on dental implants considering different surface modifications.

Materials And Methods: Patients of both sexes were included. They had to be in generally good health, partially edentulous, and the recipient of at least 1 screw-type implant with an abutment possessing supra- and subgingival areas.

View Article and Find Full Text PDF