The theory of orientation polarization and dielectric relaxation was developed by P. Debye more than 100 years ago. It is based on approximating a molecule by a sphere having one or more dipole moments.
View Article and Find Full Text PDFDensity is the key quantity for nearly all the numerous theories of the (dynamic) glass transition of supercooled liquids and melts. As mean field quantity, it is used to describe correlations and heterogeneities between regions consisting of several molecules. In contrast, the question how density is created by the interactions (i.
View Article and Find Full Text PDFMolecular dynamics in ultrathin layers is investigated using nanostructured electrodes to perform broadband dielectric spectroscopy measurements, and by atomistic molecular dynamics simulations. Using poly(vinyl acetate) as the model system and taking advantage of access to the distribution of relaxation times in an extended temperature range above the glass transition temperature, , we demonstrate that while the mean rates of the segmental relaxation remain bulklike down to 12 nm film thickness, modified molecular mobilities arise in the interfacial zones. Combining results from simulations and experiments, we show unambiguously that both the slow relaxations arising from adsorbed polymer segments and the faster modes attributed to segments in the vicinity of the free interface have non-Arrhenius temperature activation.
View Article and Find Full Text PDFHydrogen bonding and charge transport in the protic polymerized ionic liquid poly[tris(2-(2-methoxyethoxy)ethyl)ammoniumacryloxypropyl sulfonate] (PAAPS) are studied by combining Fourier transform infrared (FTIR) and broadband dielectric spectroscopy (BDS) in a wide temperature range from 170 to 300 K. While the former enables to determine precisely the formation of hydrogen bonds and other moiety-specific quantized vibrational states, the latter allows for recording the complex conductivity in a spectral range from 10-2 to 10+9 Hz. A pronounced thermal hysteresis is observed for the H-bond network formation in distinct contrast to the reversibility of the effective conductivity measured by BDS.
View Article and Find Full Text PDFSpider silks are remarkable materials designed by nature to have extraordinary elasticity. Their elasticity, however, remains poorly understood, as typical stress-strain experiments only allow access to the axial Young's modulus. In this work, micro-Brillouin light spectroscopy (micro-BLS), a noncontact, nondestructive technique, is utilized to probe the direction-dependent phonon propagation in the spider silk and hence solve its full elasticity.
View Article and Find Full Text PDFPolyimides are interesting polymer materials for organic solvent nanofiltration (OSN) applications because of their high excess free volume and high chemical and temperature resistance. However, an open challenge that remains for glassy polymer materials (i.e.
View Article and Find Full Text PDFPolymeric ionic liquids (PILs) form a novel class of materials in which the extraordinary properties of ionic liquids (ILs) are combined with the mechanical stability of polymeric systems qualifying them for multifold applications. In the present study broadband dielectric spectroscopy (BDS), Fourier transform infrared spectroscopy (FTIR), AC-chip calorimetry (ACC) and differential scanning calorimetry (DSC) are combined in order to unravel the interplay between charge transport and glassy dynamics. Three low molecular weight ILs and their polymeric correspondents are studied with systematic variations of anions and cations.
View Article and Find Full Text PDFThe inter- and intra-molecular interactions as they evolve in the course of glassy solidification are studied by broadband dielectric-and Fourier-transform infrared-spectroscopy for oligomeric derivatives of poly(ethylene glycol) derivatives, namely, poly(ethylene glycol) phenyl ether acrylate and poly(ethylene glycol) dibenzoate in the bulk and under confinement in nanoporous silica having mean pore diameters 4, 6, and 8 nm, with native and silanized inner surfaces. Analyzing the spectral positions and the oscillator strengths of specific IR absorption bands and their temperature dependencies enables one to trace the changes in the intra-molecular potentials and to compare it with the dielectrically determined primarily inter-molecular dynamics. Special emphasis is given to the calorimetric glass transition temperature T and T ≈ 1.
View Article and Find Full Text PDFA novel experimental setup is described which enables one to carry out infrared transition moment orientational analysis (IR-TMOA) depending on temperature. By this, three dimensional molecular order parameter tensors of IR-active transition dipole moments with respect to the sample coordinate system can be determined in their thermal evolution (35 °C < T < 59 °C). As an example crystallinity and macroscopic order of poly-ε-caprolcatone are monitored.
View Article and Find Full Text PDFSpider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness's molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level.
View Article and Find Full Text PDFGlassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 μm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e.
View Article and Find Full Text PDFSpider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk's dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains.
View Article and Find Full Text PDFBroadband dielectric spectroscopy and positron annihilation lifetime spectroscopy are employed to study the molecular dynamics and effective free volume of 2-ethyl-1-hexanol (2E1H) in the bulk state and when confined in unidirectional nanopores with average diameters of 4, 6, and 8 nm. Enhanced α-relaxations with decreasing pore diameters closer to the calorimetric glass-transition temperature (T(g)) correlate with the increase in the effective free volume. This indicates that the glassy dynamics of 2D constrained 2E1H is mainly controlled by density variation.
View Article and Find Full Text PDFBy combining enzyme-linked immunosorbent assay (ELISA) and optical tweezers-assisted dynamic force spectroscopy (DFS), we identify for the first time the binding epitope of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to the Alzheimer's disease relevant peptide tau[pThr231/pSer235] on the level of single amino acids. In particular, seven tau isoforms are synthesized by replacing binding relevant amino acids by a neutral alanine (alanine scanning). From the binding between mAb HPT-101 and the alanine-scan derivatives, we extract specific binding parameters such as bond lifetime τ0, binding length x(ts), free energy of activation ΔG (DFS) and affinity constant K(a) (ELISA, DFS).
View Article and Find Full Text PDFThe IR-based method of infrared transition moment orientational analysis (IR-TMOA) is employed to unravel molecular order in thin layers of the semiconducting polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) (P(NDI2OD-T2)). Structure-specific vibrational bands are analyzed in dependence on polarization and inclination of the sample with respect to the optical axis. By that the molecular order parameter tensor for the respective molecular moieties with regard to the sample coordinate system is deduced.
View Article and Find Full Text PDFThe molecular dynamics of poly(2-vinyl-pyridine) (P2VP) brushes is measured by Broadband Dielectric Spectroscopy (BDS) in a wide temperature (250 K to 440 K) and broad spectral (0.1 Hz to 1 MHz) range. This is realized using nanostructured, highly conductive silicon electrodes being separated by silica spacers as small as 35 nm.
View Article and Find Full Text PDFCharge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center.
View Article and Find Full Text PDFThe impact of 1- and 2-dimensional (2D) confinement on the structure and dynamics of poly(styrene-b-1,4-isoprene) P(S-b-I) diblock copolymer is investigated by a combination of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Grazing-Incidence Small-Angle X-ray Scattering (GISAXS), and Broadband Dielectric Spectroscopy (BDS). 1D confinement is achieved by spin coating the P(S-b-I) to form nanometric thin films on silicon substrates, while in the 2D confinement, the copolymer is infiltrated into cylindrical anodized aluminum oxide (AAO) nanopores. After dissolving the AAO matrix having mean pore diameter of 150 nm, the SEM images of the exposed P(S-b-I) show straight nanorods.
View Article and Find Full Text PDFThe experimental realization and an algorithm for analysing the pressure dependence of the molecular order parameter of specific structural moieties in (bio)macromolecular fibres are described. By employing a diamond anvil cell (DAC) the polarization-dependent IR-transmission and in parallel, using an integrated microscope, the macroscopic orientation of the fibres is determined. This enables one to separate between order and disorder at macroscopic and microscopic scales.
View Article and Find Full Text PDFFourier Transform Infrared Spectroscopy and Broadband Dielectric Spectroscopy are combined to trace kinetics of mutarotation in L-fucose. After quenching molten samples down to temperatures between T = 313 K and 328 K, the concentrations of two anomeric species change according to a simple exponential time dependence, as seen by an increase in absorbance of specific IR-vibrations. In contrast, the dielectric spectra reveal a slowing down of the structural (α-) relaxation process according to a stretched exponential time dependence (stretching exponent of 1.
View Article and Find Full Text PDFIn order to understand the nature of the exceedingly low ionic conductivity of aprotic ammonium ionic liquids (ILs), we have measured the charge transport and structural dynamics of methyltrioctylammonium bis(trifluoromethylsulfonyl)imide [m3oa][ntf2] over a broad temperature range using broadband dielectric spectroscopy, depolarized dynamic light scattering (DDLS), rheology, and pulsed field gradient nuclear magnetic resonance. We demonstrate that the low level of ionic conductivity in this material is due to the combined effects of reduced ion mobility as well as reduced free ion concentration relative to other types of ILs. Furthermore, detailed analysis of the DDLS spectra reveals a slow process in addition to the structural α relaxation that we attribute to reorientational motion of alkyl aggregates.
View Article and Find Full Text PDFOptical tweezers-assisted dynamic force spectroscopy is employed to investigate specific receptor-ligand interactions on the level of single binding events. In particular, we analyze binding of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to synthetic tau-peptides with two potential phosphorylation sites (Thr231 and Ser235), being the most probable markers for Alzheimer's disease. Whereas the typical interpretation of enzyme-linked immunosorbent assay (ELISA) suggests that this monoclonal antibody binds exclusively to the double-phosphorylated tau-peptide, we show here by DFS that the specificity of only mAb HPT-101 is apparent.
View Article and Find Full Text PDFFourier Transform Infra Red (FTIR) and Broadband Dielectric Spectroscopy (BDS) are combined to study both the intra- and inter-molecular dynamics of two isomers of glass forming fucose, far below and above the calorimetric glass transition temperature, T(g). It is shown that the various IR-active vibrations exhibit in their spectral position and oscillator strength quite different temperature dependencies, proving their specific signature in the course of densification and glass formation. The coupling between intra- and inter molecular dynamics is exemplified by distinct changes in IR active ring vibrations far above the calorimetric glass transition temperature at about 1.
View Article and Find Full Text PDFIn the course of miniaturization down to the nanometer scale, much remains unknown concerning how and to what extent the properties of materials are changed. To learn more about the dynamics of condensed isolated polymer chains, we used broadband dielectric spectroscopy and a capacitor with nanostructured electrodes separated by 35 nanometers. We measured the dynamic glass transition of poly(2-vinylpyridine) and found it to be bulk-like; only segments closer than 0.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
Optical Tweezers are employed to study the electrophoretic and the electroosmotic motion of a single colloid immersed in electrolyte solutions of ion concentrations between 10(-5) and 1 mol/l and of different valencies (KCl, CaCl(2), LaCl(3)). The measured particle mobility in monovalent salt is found to be in agreement with computations combining primitive model molecular dynamics simulations of the ionic double layer with the standard electrokinetic model. Mobility reversal of a single colloid-for the first time-is observed in the presence of trivalent ions (LaCl(3)) at ionic strengths larger than 10(-2) mol/l.
View Article and Find Full Text PDF