Seedling resistance to leaf rust available in the synthetic hexaploid wheat line Syn137 was characterised by means of cytogenetic and linkage mapping. Monosomic analysis located a single dominant gene for leaf rust resistance on chromosome 5D. Molecular mapping not only confirmed this location but also positioned the gene to the distal part of the long arm of chromosome 5D.
View Article and Find Full Text PDFBackground: The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress.
Results: Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species.
Genetic characterization of a new powdery mildew resistance gene in a common wheat line ATRI3004/79 was conducted by employing a set of Blumeria graminis tritici isolates collected from Europe. Monosomic analysis revealed that a major resistance gene is located on chromosome 1A. Allelism tests of the F2 and F3 populations with other previously known genes on 1A showed that the resistance gene in ATRI3004/79 is closely linked to the Pm3d resistance gene in the German cultivar Syros, whereas it segregated independently from Pm25.
View Article and Find Full Text PDFThe genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis.
View Article and Find Full Text PDFBrachypodium distachyon, a small wild grass within the Pooideae family, is a new model organism for exploring the functional genomics of cereal crops. It was shown to have close relationships to wheat, barley and rice. Here, we describe the molecular characterisation and evolutionary relationships of high molecular weight glutenin subunits (HMW-GS) genes from B.
View Article and Find Full Text PDFPowdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn.
View Article and Find Full Text PDFPhylogenetic relationships between the C, U, N, and M genomes of Aegilops species and the genomes of common wheat and other related species were investigated by using three types of low-molecular-weight glutenin subunit (LMW-GS) genes at Glu-3 loci. A total of 20 LMW-GS genes from Aegilops and Triticum species were isolated, including 11 LMW-m type and 9 LMW-i type genes. Particularly, four LMW-m type and three LMW-i type subunits encoded by the genes on the C, N, and U genomes possessed an extra cysteine residue at conserved positions, which could provide useful information for understanding phylogenetic relationships among Aegilops and Triticum genomes.
View Article and Find Full Text PDFThe flavonoid rich grain of buckwheat (Fagopyrum esculentum Moench, Fam. Polygonaceae) is of high nutritional value. With the aim to improve its agronomic productivity, cultivars were crossed with the wild species F.
View Article and Find Full Text PDFThe occurrence and distribution of seedling resistance genes and the presence of adult plant resistance to powdery mildew, was investigated in a collection of 155 Nordic bread wheat landraces and cultivars by inoculation with 11 powdery mildew isolates. Eighty-nine accessions were susceptible in the seedling stage, while 66 accessions showed some resistance. Comparisons of response patterns allowed postulation of combinations of genes Pm1a, Pm2, Pm4b, Pm5, Pm6, Pm8 and Pm9 in 21 lines.
View Article and Find Full Text PDFA novel y-type high molecular mass glutenin subunit (HMM-GS) possessing a mobility that is slightly slower than that of the subunit Dy10 obtained by SDS-PAGE, named Dy10.1t, in the wild wheat Aegilops tauschii was identified by 1- and 2-dimensional gel electrophoresis, capillary electrophoresis, and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The gene encoding the HMM subunit Dy10.
View Article and Find Full Text PDFA set of differential isolates of Blumeria graminis f.sp. tritici was used to identify 10 alleles at the Pm3 locus on the short arm of chromosome 1A.
View Article and Find Full Text PDFCultivated emmer (Triticum dicoccum, 2n = 4x = 28, AABB) is closely related to bread wheat and possesses extensive allelic variations in high molecular weight glutenin subunit (HMW-GS) composition. These alleles may be an important genetic resource for wheat quality improvement. To isolate and clone HMW-GS genes from cultivated emmer, two pairs of allele-specific (AS) PCR primers were designed to amplify the coding sequence of y-type HMW-GS genes and their upstream sequences, respectively.
View Article and Find Full Text PDFThis study focused on optimizing phosphate-based buffers and other capillary electrophoresis (CE) parameters for separating and characterizing high molecular weight glutenin subunits (HMW-GS) in bread wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), emmer (Triticum dicoccum, AABB, 2n = 4x = 28) and Aegilops tauschii (DD, 2n = 2x = 14). The fast and high-resolution separation of HMW-GS was achieved using 0.
View Article and Find Full Text PDFTwo Chinese wheat lines Jieyan 94-1-1 and Siyan 94-1-2 are resistant to all 120 isolates of Blumeria graminis f. sp. tritici maintained in Weihenstephan, Germany.
View Article and Find Full Text PDF