Publications by authors named "Friedrich Horz"

This report summarizes observations of returned Apollo rocks and soils, lunar surface images, orbital observations, and experimental impacts related to the erosion and comminution of rocks exposed at the lunar surface. The objective is to develop rigorous criteria for the recognition of impact processes that assist in distinguishing "impact" from other potential erosional processes, particularly thermal fatigue, which has recently been advocated specifically for asteroids. Impact in rock is a process that is centrally to bilaterally symmetric, resulting in highly crushed, high-albedo, quasicircular depressions surrounded by volumetrically prominent spall zones.

View Article and Find Full Text PDF

Delivery of prebiotic molecules, such as amino acids and peptides, in meteoritic/micrometeoritic materials to early Earth during the first 500 million years is considered to be one of the main processes by which the building blocks of life arrived on Earth. In this context, we present a study in which the effects of impact shock on amino acids and a peptide in artificial meteorites composed of saponite clay were investigated. The samples were subjected to pressures ranging from 12-28.

View Article and Find Full Text PDF

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%.

View Article and Find Full Text PDF

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size.

View Article and Find Full Text PDF
Article Synopsis
  • The Stardust spacecraft collected particles from comet 81P/Wild 2, bringing them back to Earth for analysis.
  • Preliminary results indicate that the comet's nonvolatile materials mix presolar and solar system origins, revealing diverse origins of matter.
  • Surprisingly, the comet contains larger silicate grains than predicted, including high-temperature minerals likely formed in the inner solar system, suggesting significant mixing during solar system formation.
View Article and Find Full Text PDF

Images taken by the Stardust mission during its flyby of 81P/Wild 2 show the comet to be a 5-kilometer oblate body covered with remarkable topographic features, including unusual circular features that appear to be impact craters. The presence of high-angle slopes shows that the surface is cohesive and self-supporting. The comet does not appear to be a rubble pile, and its rounded shape is not directly consistent with the comet being a fragment of a larger body.

View Article and Find Full Text PDF