Publications by authors named "Friedrich Fraundorfer"

We propose a novel method applicable in many scene understanding problems that adapts the Monte Carlo Tree Search (MCTS) algorithm, originally designed to learn to play games of high-state complexity. From a generated pool of proposals, our method jointly selects and optimizes proposals that minimize the objective term. In our first application for floor plan reconstruction from point clouds, our method selects and refines the room proposals, modelled as 2D polygons, by optimizing on an objective function combining the fitness as predicted by a deep network and regularizing terms on the room shapes.

View Article and Find Full Text PDF

We propose an accurate and easy-to-implement method on rotation alignment of a camera-inertial measurement unit (IMU) system using only a single affine correspondence in the minimal case. The known initial rotation angles between the camera and IMU are utilized; thus, the alignment model can be formulated as a polynomial equation system based on homography constraints by expressing the rotation matrix in a first-order approximation. By solving the equation system, we can recover the rotation alignment parameters.

View Article and Find Full Text PDF

In this article, we present four cases of minimal solutions for two-view relative pose estimation by exploiting the affine transformation between feature points, and we demonstrate efficient solvers for these cases. It is shown that under the planar motion assumption or with knowledge of a vertical direction, a single affine correspondence is sufficient to recover the relative camera pose. The four cases considered are two-view planar relative motion for calibrated cameras as a closed-form and least-squares solutions, a closed-form solution for unknown focal length, and the case of a known vertical direction.

View Article and Find Full Text PDF

Achieving the autonomous deployment of aerial robots in unknown outdoor environments using only onboard computation is a challenging task. In this study, we have developed a solution to demonstrate the feasibility of autonomously deploying drones in unknown outdoor environments, with the main capability of providing an obstacle map of the area of interest in a short period of time. We focus on use cases where no obstacle maps are available beforehand, for instance, in search and rescue scenarios, and on increasing the autonomy of drones in such situations.

View Article and Find Full Text PDF

Exploration of challenging indoor environments is a demanding task. While automation with aerial robots seems a promising solution, fully autonomous systems still struggle with high-level cognitive tasks and intuitive decision making. To facilitate automation, we introduce a novel teleoperation system with an aerial telerobot that is capable of handling all demanding low-level tasks.

View Article and Find Full Text PDF

In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane.

View Article and Find Full Text PDF