Aims: Pulmonary hypertension is a clinical syndrome characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and death. Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are key subgroups of this disorder with comparable clinical and pathological findings. Resting pulmonary haemodynamics correlate only moderately with functional parameters and do not predict prognosis in these patients sufficiently accurately.
View Article and Find Full Text PDFBackground: Treatment with continuous positive airway pressure (CPAP) improves cardiac function in chronic heart failure (CHF) patients with central sleep apnea (CSA)-Cheyne-Stokes respiration (CSR) by stabilizing ventilation, but frequently central apneas and hypopneas persist. Our objective was to test the hypothesis that flow-targeted dynamic bilevel positive airway pressure (BPAP) support (BiPAP autoSV; Respironics; Murrysville, PA) effectively suppresses CSR-CSA in CHF patients.
Methods: We studied 14 CHF patients with CSR-CSA (and residual CSA on positive airway pressure therapy) during 3 consecutive nights: (1) diagnostic polysomnography, (2) CPAP (n=10) or BPAP (n=4) titration, and (3) dynamic flow-targeted dynamic BPAP support with an expiratory positive airway pressure (EPAP) set to suppress obstructive respiratory events, and an inspiratory positive airway pressure (IPAP) dynamically ranging between 0 and 15 cm H2O above the EPAP.
Objectives: Chronic heart failure is closely related to impaired cardiorespiratory reflex control, including decreased ventilatory efficiency during exercise (Ve/Vco(2)-slope) and central sleep apnea (CSA). Continuous positive airway pressure (CPAP) and nocturnal oxygen therapy alleviate CSA. The aim of the present study was to compare the effects of nocturnal CPAP and oxygen therapy on Ve/Vco(2)-slope.
View Article and Find Full Text PDFBackground: In patients with chronic heart failure (CHF), central sleep apnea (CSA) and enhanced ventilatory response (VE/VCO2 slope) to exercise are common. Both breathing disorders alone indicate poor prognosis in CHF. Although augmented chemosensitivity to CO2 is thought to be one important underlying mechanism for both breathing disorders, it is unclear whether both breathing disorders are related closely in patients with CHF.
View Article and Find Full Text PDFWe tested the hypothesis that pulmonary endothelial nitric oxide synthase (eNOS) gene expression is primarily regulated by hemodynamic factors and is thus increased in rats with chronic hypoxic pulmonary hypertension. Furthermore, we examined the role of endothelin (ET)-1 in this regulatory process, since ET-1 is able to induce eNOS via activation of the ET-B receptor. Therefore, chronic hypoxic rats (10% O(2)) were treated with the selective ET-A receptor antagonist LU-135252 (50 mg x kg(-1) x day(-1)).
View Article and Find Full Text PDFObjective: The regulation of pulmonary prostacyclin synthesis is not completely understood. We tested the hypothesis that prostacyclin production is predominantly stimulated by hemodynamic factors, such as increased shear-stress, and is thus increased in rats with chronic hypoxic pulmonary hypertension.
Methods: To this end, we determined pulmonary prostacyclin synthase (PGIS) gene expression, circulating levels of the stable prostacyclin metabolite 6-keto prostaglandin F(1alpha) (6-keto-PGF(1alpha)), pulmonary endothelin (ET)-1 gene expression, and ET-1 plasma levels in rats exposed to 4 weeks of hypoxia (10% O(2)) in the presence or absence of either the nitric oxide (NO) donor molsidomine (MD, 15 mg/kg/day) or the ET-A receptor antagonist LU135252 (LU, 50 mg/kg/day).
Study Objectives: Aerosolized iloprost, a stable prostacyclin analog, improves functional capacity even in patients with pulmonary hypertension who did not show a vigorous hemodynamic response after iloprost inhalation at rest. We therefore speculated that aerosolized iloprost elicits more beneficial effects on pulmonary hemodynamics during exercise than at rest.
Design And Setting: A prospective, open, uncontrolled study at a university hospital.