Process-based forest models combine biological, physical, and chemical process understanding to simulate forest dynamics as an emergent property of the system. As such, they are valuable tools to investigate the effects of climate change on forest ecosystems. Specifically, they allow testing of hypotheses regarding long-term ecosystem dynamics and provide means to assess the impacts of climate scenarios on future forest development.
View Article and Find Full Text PDFDeriving gross & net primary productivity (GPP & NPP) and carbon turnover time of forests from remote sensing remains challenging. This study presents a novel approach to estimate forest productivity by combining radar remote sensing measurements, machine learning and an individual-based forest model. In this study, we analyse the role of different spatial resolutions on predictions in the context of the Radar BIOMASS mission (by ESA).
View Article and Find Full Text PDFForest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure.
View Article and Find Full Text PDFPlant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models.
View Article and Find Full Text PDFTropical forests play an important role in the global carbon cycle. High-resolution remote sensing techniques, e.g.
View Article and Find Full Text PDFModels are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change.
View Article and Find Full Text PDFEcosystems respond in various ways to disturbances. Quantifying ecological stability therefore requires inspecting multiple stability properties, such as resistance, recovery, persistence and invariability. Correlations among these properties can reduce the dimensionality of stability, simplifying the study of environmental effects on ecosystems.
View Article and Find Full Text PDFR Soc Open Sci
January 2017
While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity-productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called 'forest factory', which generates various forest stands and calculates their annual productivity (above-ground wood increment).
View Article and Find Full Text PDF