Computational models of the cardiovascular system are increasingly used for the diagnosis, treatment, and prevention of cardiovascular disease. Before being used for translational applications, the predictive abilities of these models need to be thoroughly demonstrated through verification, validation, and uncertainty quantification. When results depend on multiple uncertain inputs, sensitivity analysis is typically the first step required to separate relevant from unimportant inputs, and is key to determine an initial reduction on the problem dimensionality that will significantly affect the cost of all downstream analysis tasks.
View Article and Find Full Text PDFBiomech Model Mechanobiol
June 2024
The common carotid artery (CCA) is an accessible and informative site for assessing cardiovascular function which makes it a prime candidate for clinically relevant computational modelling. The interpretation of supplemental information possible through modelling is encumbered by measurement uncertainty and population variability in model parameters. The distribution of model parameters likely depends on the specific sub-population of interest and delineation based on sex, age or health status may correspond to distinct ranges of typical parameter values.
View Article and Find Full Text PDFMany detailed features of the cochlear anatomy have not been included in existing 3D cochlear models, including the microstructures inside the modiolar bone, which in turn determines the path of auditory nerve fibers (ANFs). We captured the intricate modiolar microstructures in a 3D human cochlea model reconstructed from μCT scans. A new algorithm was developed to reconstruct ANFs running through the microstructures within the model.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Three-dimensional (3D) computational models of the inner ear have been utilised to assist in investigating the factors that influence cochlear implant (CI) outcomes. A volume conductor cochlear model with an implanted electrode array was reconstructed from X-ray microtomography $(\mu$ CT) scans of a cadaveric human temporal bone. To mimic an in-vivo setting, the cochlea was embedded in a head model.
View Article and Find Full Text PDFThe neck domain of fungal conventional kinesins displays characteristic properties which are reflected in a specific sequence pattern. The exchange of the strictly conserved Tyr 362, not present in animals, into Lys, Cys or Phe leads to a failure to dimerize. The destabilizing effect is confirmed by a lower coiled-coil propensity of mutant peptides.
View Article and Find Full Text PDF