Publications by authors named "Friederike Eberhagen"

The design, development and application of an efficient procedure for the concise synthesis of the 1,3-syn- and anti-tetrahydropyrimidine cores of manzacidins are reported. The intramolecular allylic substitution reaction of a readily available joint urea-type substrate enables the facile preparation of both diastereomers in high yields. The practical application of this approach is demonstrated in the efficient and modular preparation of the authentic heterocyclic cores of manzacidins, structurally unique bromopyrrole alkaloids of marine origin.

View Article and Find Full Text PDF

Three shape-persistent naphthylene-phenylene-acetylene macrocycles of identical backbone structures and extraannular substitution patterns but different (empty, apolar, polar) nanopore fillings are self-assembled at the solid/liquid interface of highly oriented pyrolytic graphite and 1,2,4-trichlorobenzene. Submolecularly resolved images of the resulting two-dimensional (2D) crystalline monolayer patterns are obtained by in situ scanning tunneling microscopy. A concentration-dependent conformational polymorphism is found, and open and more dense packing motifs are observed.

View Article and Find Full Text PDF

The aggregation of shape-persistent macrocycles with an empty cavity, an undecyldiether strand and a tetraethylene glycol strand leads in all cases to a macroscopic gelation of the solvent. However, the gelation temperatures are fine-tuned by the intraannular substituents.

View Article and Find Full Text PDF

Rigid rod oligo(phenylene-ethynylene-butadiynylene)s (oPEBs), "half-rings" of two rigid rods connected via a molecular clamp unit, and shape-persistent macrocycles (cyclic "half-ring dimers") are synthesized and their self-assembled monolayers (SAMs) are investigated by scanning tunneling microscopy (STM) at the interface of 1,2,4-trichlorobenzene (TCB)/highly oriented pyrolytic graphite (HOPG). The results are important for the design of molecular building blocks for two-dimensional nanoscale architectures on solid surfaces.

View Article and Find Full Text PDF

Shape-persistent rigid phenylene-ethynylene-butadiynylenes form lamellar self-assembled monolayers (SAMs) at the HOPG/TCB interface, which were studied by scanning tunneling microscopy (STM) with submolecular resolution. Substitution of the terminating acetylene functions with polar cyanopropyldimethylsilyl groups leads to 2D phase separation and defined rod-rod interactions, which determine the packing distances between the rigid rods. The results stimulated the connection of rigid rods via septiarylene clamp units.

View Article and Find Full Text PDF