Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated .
View Article and Find Full Text PDFTryptophan synthase catalyzes the synthesis of a wide array of noncanonical amino acids and is an attractive target for directed evolution. Droplet microfluidics offers an ultrahigh throughput approach to directed evolution (up to 10 experiments per day), enabling the search for biocatalysts in wider regions of sequence space with reagent consumption minimized to the picoliter volume (per library member). While the majority of screening campaigns in this format on record relied on an optically active reaction product, a new assay is needed for tryptophan synthase.
View Article and Find Full Text PDFOxyfunctionalisation reactions in neat substrate still pose a challenge for biocatalysis. Here, we report an alginate-confined peroxygenase-CLEA to catalyse the enantioselective epoxidation of cis-β-methylstyrene in a solvent-free reaction system achieving turnover numbers of 96 000 for the biocatalyst and epoxide concentrations of 48 mM.
View Article and Find Full Text PDF