Publications by authors named "Friederike Christen"

Article Synopsis
  • - Clonal hematopoiesis (CH) is the increase of specific blood stem cell clones due to genetic mutations, linked to serious health issues like cancers and cardiovascular diseases, which raise mortality risk.
  • - Lymphoid clonal hematopoiesis (L-CH) affects a wider range of genes but is less common and harder to detect compared to its myeloid counterparts.
  • - The study presents a targeted sequencing method for accurately identifying CH in bone marrow or blood samples, emphasizing DNA isolation, library preparation, and computational analysis for reliable variant detection.
View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) often involves deletions of chromosome 7, which are linked to poor patient outcomes, but the full impact of other genetic changes related to this is not well understood.
  • Researchers analyzed genetic alterations in 519 AML patients, using whole-exome sequencing and a specialized gene panel, finding that mutations in TP53, which occurred in 33% of cases, were among the most common.
  • The study identified specific genes, like TP53 and PTPN11, that have a significant negative effect on overall and relapse-free survival, highlighting the complex relationship between chromosome 7 abnormalities and patient prognosis in AML.
View Article and Find Full Text PDF

Clonal hematopoiesis (CH) driven by mutations in the DNA damage response (DDR) pathway is frequent in patients with cancer and is associated with a higher risk of therapy-related myeloid neoplasms (t-MNs). Here, we analyzed 423 serial whole blood and plasma samples from 103 patients with relapsed high-grade ovarian cancer receiving carboplatin, poly(ADP-ribose) polymerase inhibitor (PARPi) and heat shock protein 90 inhibitor (HSP90i) treatment within the phase II EUDARIO trial using error-corrected sequencing of 72 genes. DDR-driven CH was detected in 35% of patients and was associated with longer duration of prior PARPi treatment.

View Article and Find Full Text PDF

To investigate clonal hematopoiesis associated gene mutations in vitro and to unravel the direct impact on the human stem and progenitor cell (HSPC) compartment, we targeted healthy, young hematopoietic progenitor cells, derived from umbilical cord blood samples, with CRISPR/Cas9 technology. Site-specific mutations were introduced in defined regions of DNMT3A, TET2, and ASXL1 in CD34 progenitor cells that were subsequently analyzed in short-term as well as long-term in vitro culture assays to assess self-renewal and differentiation capacities. Colony-forming unit (CFU) assays revealed enhanced self-renewal of TET2 mutated (TET2) cells, whereas ASXL1 as well as DNMT3A cells did not reveal significant changes in short-term culture.

View Article and Find Full Text PDF

Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.

View Article and Find Full Text PDF

Acute myeloid leukemia with t(8;21)(q22;q22) is characterized by considerable clinical and biological heterogeneity leading to relapse in up to 40% of patients. We sequenced coding regions or hotspot areas of 66 recurrently mutated genes in a cohort of 331 t(8;21) patients. At least 1 mutation, in addition to t(8;21), was identified in 95%, with a mean of 2.

View Article and Find Full Text PDF

Purpose: Clonal hematopoiesis of indeterminate potential (CHIP) occurs in the blood of approximately 20% of older persons. CHIP is linked to an increased risk of hematologic malignancies and of all-cause mortality; thus, the eligibility of stem-cell donors with CHIP is questionable. We comprehensively investigated how donor CHIP affects outcome of allogeneic hematopoietic stem-cell transplantation (HSCT).

View Article and Find Full Text PDF

Clonal hematopoiesis of indeterminate potential (CHIP) occurs in an age-related manner and associates with an increased risk of hematologic cancer, atherosclerotic disease, and shorter overall survival. Little is known about the cell of origin, repartition patterns of clonal mutations within the hematopoietic differentiation tree, and its dynamics under evolutionary pressure. Using targeted sequencing, CHIP was identified in 121 out of 437 elderly individuals (27.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an aggressive cancer showing a very poor prognosis because of metastasis formation at an early stage and acquisition of chemoresistance. One key driver of chemoresistance is the transcription factor Forkhead box protein M1 (FOXM1) that regulates cell cycle proliferation, maintenance of genomic stability, DNA damage response, and cell differentiation in numerous tumor entities. In this study we investigated the role of FOXM1 in SCLC progression and analyzed the effect of FOXM1 inhibition using two proteasome inhibitors, bortezomib and siomycin A.

View Article and Find Full Text PDF

Background/aims: The tumor suppressor p53 is rarely mutated in gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) but they frequently show a strong expression of negative regulators of p53, rendering these tumors excellent targets for a p53 recovery therapy. Therefore, we analyzed the mechanisms of a p53 recovery therapy on intestinal neuroendocrine tumors in vitro and in vivo.

Methods: By Western blot and immunohistochemistry, we found that in GEP-NEN biopsy material overexpression of MDM2 was present in intestinal NEN.

View Article and Find Full Text PDF

Background: The characteristic clinical heterogeneity and mostly slow-growing behavior of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) cause problems in finding appropriate treatments. Thus, the current therapy options are not satisfactory. PKI-587 is a highly potent, novel dual inhibitor of PI3K and mTORC1/C2.

View Article and Find Full Text PDF

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are heterogeneous tumors that need to be molecularly defined to obtain novel therapeutic options. Forkheadbox protein M1 (FOXM1) is a crucial transcription factor in neoplastic cells and has been associated with differentiation and proliferation. We found that FOXM1 is strongly associated with tumor differentiation and occurrence of metastases in gastrointestinal NENs.

View Article and Find Full Text PDF