Purpose: The purpose of this study was to design a laboratory test method to mimic the formation of bacterially formed odorants during the use of absorbent urinary incontinence products. Three odor inhibitors with different modes of action were tested and evaluated.
Methods: Bacterially formed odorants in incontinence products were evaluated by adding a synthetic urine inoculated with a mixture of 4 bacterial strains to product samples cut from the incontinence products.
We present a computer-controlled scanning electroporation method. Adherent cells are electroporated using an electrolyte-filled capillary in contact with an electrode. The capillary can be scanned over a cell culture and locally deliver both an electric field and an electroporation agent to the target area without affecting surrounding cells.
View Article and Find Full Text PDFWe here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied.
View Article and Find Full Text PDFElectroporation is a widely used method for the introduction of polar and charged agents such as dyes, drugs, DNA, RNA, proteins, peptides, and amino acids into cells. Traditionally, electroporation is performed with large electrodes in a batch mode for treatment of a large number of cells in suspension. Recently, microelectrodes that can produce extremely localized electric fields, such as solid carbon fiber microelectrodes, electrolyte-filled capillaries and micropipettes as well as chip-based microfabricated electrode arrays, have proven useful to electroporate single cells and subcellular structures.
View Article and Find Full Text PDF