The Alzheimer's disease (AD)-related peptide amyloid-β (Aβ) has a propensity to aggregate into various assemblies including toxic soluble Aβ protofibrils. Several studies have reported the existence of anti-Aβ antibodies in humans. However, it is still debated whether levels of anti-Aβ antibodies are altered in AD patients compared to healthy individuals.
View Article and Find Full Text PDFSoluble amyloid-β (Aβ) aggregates of various sizes, ranging from dimers to large protofibrils, have been associated with neurotoxicity and synaptic dysfunction in Alzheimer's Disease (AD). To investigate the properties of biologically relevant Aβ species, brain extracts from amyloid β protein precursor (AβPP) transgenic mice and AD patients as well as synthetic Aβ preparations were separated by size under native conditions with density gradient ultracentrifugation. The fractionated samples were then analyzed with atomic force microscopy (AFM), ELISA, and MTT cell viability assay.
View Article and Find Full Text PDFThe identification of disease-causing mutations in Alzheimer's disease has contributed greatly to the understanding of the pathogenesis of this disease. The amyloid-β (Aβ) peptide has come into focus and is believed to be central to the pathogenesis of Alzheimer's disease. With only symptomatic treatment available, efforts to develop new therapeutics aimed at lowering the amount of Aβ peptides in the affected brain have intensified.
View Article and Find Full Text PDFBackground: Protein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimer's disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders.
View Article and Find Full Text PDFBackground/aims: Amyloid-β (Aβ) protofibrils are neurotoxic soluble intermediates in the Aβ aggregation process eventually forming senile plaques in Alzheimer's disease. This Aβ species is a potential biomarker for Alzheimer's disease and also a promising target for immunotherapy. In this study, we investigated the characteristics of conformation-dependent Aβ antibodies specific for Aβ protofibrils.
View Article and Find Full Text PDFWe have investigated the use of isoelectric focusing and immunodetection for the separation of low molecular weight species of amyloid-beta (Abeta) peptides from their aggregates. From solutions of Abeta(1-40) or Abeta(1-42) monomeric peptides, low molecular weight material appeared at a pI value of ca. 5, while the presence of aggregates was detected as bands, observed at a pI of 6-6.
View Article and Find Full Text PDFAmyloid-β (Aβ) oligomers of different sizes and forms have recently been the focus formany Alzheimer's disease (AD) researchers. Various immunoassays have been used to detect low concentrations of these elusive Aβ species in different forms of human samples using little or no sample dilutions. However, the possibility that positive results may be caused by interference from heterophilic antibodies (HA) is often overlooked.
View Article and Find Full Text PDFHuman genetics link Alzheimer's disease pathogenesis to excessive accumulation of amyloid-beta (Abeta) in brain, but the symptoms do not correlate with senile plaque burden. Since soluble Abeta aggregates can cause synaptic dysfunctions and memory deficits, these species could contribute to neuronal dysfunction and dementia. Here we explored selective targeting of large soluble aggregates, Abeta protofibrils, as a new immunotherapeutic strategy.
View Article and Find Full Text PDFBackground/objective: The lowering of natively analyzed Abeta42 in cerebrospinal fluid (CSF) is used as a diagnostic tool in Alzheimer's disease (AD). The presence of Abeta oligomers can interfere with such analyses causing underestimation of Abeta levels due to epitope masking. The aim was to investigate if the lowering of CSF Abeta42 seen in AD is caused by oligomerization.
View Article and Find Full Text PDFEpidemiological studies suggest that a high intake of polyunsaturated fatty acids, such as docosahexaenoic acid (DHA), is associated with a reduced risk of Alzheimer's disease. Here, we examined the effects of DHA on amyloid precursor protein (APP) processing in cellular models of Alzheimer's disease by analysing levels of different APP fragments, including amyloid-beta (Abeta). DHA administration stimulated non-amyloidogenic APP processing and reduced levels of Abeta, providing a mechanism for the reported beneficial effects of DHA in vivo.
View Article and Find Full Text PDFAmyloid-beta (Abeta) protofibrils are known intermediates of the in vitro Abeta aggregation process and the protofibrillogenic Arctic mutation (APPE693G) provides clinical support for a pathogenic role of Abeta protofibrils in Alzheimer's disease (AD). To verify their in vivo relevance and to establish a quantitative Abeta protofibril immunoassay, Abeta conformation dependent monoclonal antibodies were generated. One of these antibodies, mAb158 (IgG2a), was used in a sandwich ELISA to specifically detect picomolar concentrations of Abeta protofibrils without interference from Abeta monomers or the amyloid precursor protein (APP).
View Article and Find Full Text PDFEnrichment of diet and culture media with the polyunsaturated fatty acid docosahexaenoic acid has been found to reduce the amyloid burden in mice and lower amyloid-beta (Abeta) levels in both mice and cultured cells. However, the direct interaction of polyunsaturated fatty acids, such as docosahexaenoic acid, with Abeta, and their effect on Abeta aggregation has not been explored in detail. Therefore, we have investigated the effect of docosahexaenoic acid, arachidonic acid and the saturated fatty acid arachidic acid on monomer oligomerization into protofibrils and protofibril fibrillization into fibrils in vitro, using size exclusion chromatography.
View Article and Find Full Text PDF