The presubiculum is part of the parahippocampal cortex and plays a fundamental role for orientation in space. Many principal neurons of the presubiculum signal head direction, and show persistent firing when the head of an animal is oriented in a specific preferred direction. GABAergic neurons of the presubiculum control the timing, sensitivity and selectivity of head directional signals from the anterior thalamic nuclei.
View Article and Find Full Text PDFThe functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs.
View Article and Find Full Text PDFThe cognitive map is a concept first introduced by Edward Tolman in 1948 to describe the map of the environment stored in the brain. In this review, after a brief mention of the history of this concept, we explore the contributions of place cells and grid cells to the neural basis of the creation and storage of a spatial map. Finally, we discuss how this map is consolidated and stored in the brain.
View Article and Find Full Text PDFSelf-assembled quantum dots (QDs) based on III-V semiconductors have excellent properties for applications in quantum optics. However, the presence of a 2D wetting layer (WL) which forms during the Stranski-Krastanov growth of QDs can limit their performance. Here, we investigate WL formation during QD growth by the droplet epitaxy technique.
View Article and Find Full Text PDFWavelength conversion at the single-photon level is required to forge a quantum network from distinct quantum devices. Such devices include solid-state emitters of single or entangled photons, as well as network nodes based on atoms or ions. Here we demonstrate the conversion of single photons emitted from a III-V semiconductor quantum dot at 853 nm via sum frequency conversion to the wavelength of the strong transition of Yb ions at 370 nm.
View Article and Find Full Text PDFOligodendrocytes form myelin for central nervous system axons and release factors which signal to neurons during myelination. Here, we ask how oligodendroglial factors influence hippocampal GABAergic neuron physiology. In mixed hippocampal cultures, GABAergic neurons fired action potentials (APs) of short duration and received high frequencies of excitatory synaptic events.
View Article and Find Full Text PDFAxonal myelination by oligodendrocytes increases the speed and reliability of action potential propagation, and so plays a pivotal role in cortical information processing. The extent and profile of myelination vary between different cortical layers and groups of neurons. Two subtypes of cortical GABAergic neurons are myelinated: fast-spiking parvalbumin-expressing cells and somatostatin-containing cells.
View Article and Find Full Text PDFPatch-clamp recordings are the method of choice to define cell-type specific electrophysiological properties of single neurons and the synaptic connectivity between pairs of connected neurons in brain slices. In combination with optogenetic tools, patch-clamp recordings allow for the investigation of long-range afferent connectivity from identified distant brain areas. Here we describe the necessary equipment to carry out patch clamp recordings, surgical methods for dissection and preparation of horizontal brain slices containing the hippocampus, and a step-by-step guide for establishing patch clamp recordings in the whole-cell configuration.
View Article and Find Full Text PDFObjective: Unilateral labyrinthectomy (UL) and unilateral vestibular neurectomy (UVN) are two surgical methods to produce vestibular lesions in the mouse. The objective of this study was to describe the surgical technique of both methods, and compare functional compensation using vestibulo-ocular reflex-based tests.
Methods: UL and UVN were each performed on groups of seven and ten mice, respectively.
Knowledge of cell-type specific synaptic connectivity is a crucial prerequisite for understanding brain-wide neuronal circuits. The functional investigation of long-range connections requires targeted recordings of single neurons combined with the specific stimulation of identified distant inputs. This is often difficult to achieve with conventional and electrical stimulation techniques, because axons from converging upstream brain areas may intermingle in the target region.
View Article and Find Full Text PDFThe presubiculum contains head direction cells that are crucial for spatial orientation. Here, we examined the connectivity and strengths of thalamic inputs to presubicular layer 3 neurons projecting to the medial entorhinal cortex in the mouse. We recorded pairs of projection neurons and interneurons while optogenetically stimulating afferent fibers from the anterior thalamic nuclei.
View Article and Find Full Text PDFOrientation in space is a fundamental cognitive process relying on brain-wide neuronal circuits. Many neurons in the presubiculum in the parahippocampal region encode head direction and each head direction cell selectively discharges when the animal faces a specific direction. Here, we attempt to link the current knowledge of afferent and efferent connectivity of the presubiculum to the processing of the head direction signal.
View Article and Find Full Text PDFArc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice.
View Article and Find Full Text PDFOrientation in space is represented in specialized brain circuits. Persistent head direction signals are transmitted from anterior thalamus to the presubiculum, but the identity of the presubicular target neurons, their connectivity and function in local microcircuits are unknown. Here, we examine how thalamic afferents recruit presubicular principal neurons and Martinotti interneurons, and the ensuing synaptic interactions between these cells.
View Article and Find Full Text PDFThe presubiculum (PrS) is part of an interconnected network of distributed brain regions where individual neurons signal the animals heading direction. PrS sends axons to medial entorhinal cortex (MEC), it is reciprocally connected with anterior thalamic nuclei (ATNs), and it sends feedback projections to the lateral mammillary nucleus (LMN), involved in generating the head direction signal. The intrinsic properties of projecting neurons will influence the pathway-specific transmission of activity.
View Article and Find Full Text PDFBehavioural analysis of mice carrying engineered mutations is widely used to identify roles of specific genes in components of the mammalian behavioural repertoire. The reproducibility and robustness of phenotypic measures has become a concern that undermines the use of mouse genetic models for translational studies. Contributing factors include low individual study power, non-standardized behavioural testing, failure to address confounds and differences in genetic background of mutant mice.
View Article and Find Full Text PDFThe molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM).
View Article and Find Full Text PDFThe efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology.
View Article and Find Full Text PDFIntracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time.
View Article and Find Full Text PDFThe presubiculum, located between hippocampus and entorhinal cortex, plays a fundamental role in representing spatial information, notably head direction. Little is known about GABAergic interneurons of this region. Here, we used three transgenic mouse lines, Pvalb-Cre, Sst-Cre, and X98, to examine distinct interneurons labeled with tdTomato or green fluorescent protein.
View Article and Find Full Text PDFHigh-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.
View Article and Find Full Text PDF