Publications by authors named "Freya Klepsch"

The histone acetyl reader bromodomain-containing protein 4 (BRD4) is an important regulator of chromatin structure and transcription, yet factors modulating its activity have remained elusive. Here we describe two complementary screens for genetic and physical interactors of BRD4, which converge on the folate pathway enzyme MTHFD1 (methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1). We show that a fraction of MTHFD1 resides in the nucleus, where it is recruited to distinct genomic loci by direct interaction with BRD4.

View Article and Find Full Text PDF

Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies.

View Article and Find Full Text PDF

Bromodomain-containing proteins of the BET family recognize histone lysine acetylation and mediate transcriptional activation of target genes such as the MYC oncogene. Pharmacological inhibitors of BET domains promise therapeutic benefits in a variety of cancers. We performed a high-diversity chemical compound screen for agents capable of modulating BRD4-dependent heterochromatization of a generic reporter in human cells.

View Article and Find Full Text PDF

Some mutations in cancer cells can be exploited for therapeutic intervention. However, for many cancer subtypes, including triple-negative breast cancer (TNBC), no frequently recurring aberrations could be identified to make such an approach clinically feasible. Characterized by a highly heterogeneous mutational landscape with few common features, many TNBCs cluster together based on their 'basal-like' transcriptional profiles.

View Article and Find Full Text PDF

The ABC transporter P-glycoprotein (P-gp) actively transports a wide range of drugs and toxins out of cells, and is therefore related to multidrug resistance and the ADME profile of therapeutics. Thus, development of predictive in silico models for the identification of P-gp inhibitors is of great interest in the field of drug discovery and development. So far in silico P-gp inhibitor prediction was dominated by ligand-based approaches because of the lack of high-quality structural information about P-gp.

View Article and Find Full Text PDF

Overexpression of the xenotoxin transporter P-glycoprotein (P-gp) represents one major reason for the development of multidrug resistance (MDR), leading to the failure of antibiotic and cancer therapies. Inhibitors of P-gp have thus been advocated as promising candidates for overcoming the problem of MDR. However, due to lack of a high-resolution structure the concrete mode of interaction of both substrates and inhibitors is still not known.

View Article and Find Full Text PDF

The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di- and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay. We have identified 35 single point mutations that result in a full or partial loss of transport activity.

View Article and Find Full Text PDF

A series of enantiomerically pure benzopyrano[3,4-b][1,4]oxazines have been synthesised and tested for their ability to inhibit P-glycoprotein. Reducing the conformational flexibility of the molecules leads to remarkable differences in the activity of diastereoisomers. Docking studies into a homology model of human P-gp provide first insights into potential binding areas for these compounds.

View Article and Find Full Text PDF

Design of inhibitors of P-glycoprotein still represents a challenging task for medicinal chemists. The polyspecificity of the transporter combined with the limited structural information renders rational drug design approaches rather ineffective. Within this article we will exemplify how recent insights into structure and mechanism of P-glycoprotein may aid in design of potent inhibitors.

View Article and Find Full Text PDF

P-Glycoprotein (P-gp), a transmembrane, ATP-dependent drug efflux transporter, has attracted considerable interest both with respect to its role in tumour cell multidrug resistance and in absorption-distribution and elimination of drugs. Although known since more than 30 years, the understanding of the molecular basis of drug/transporter interaction is still limited, which is mainly due to the lack of structural information available. However, within the past decade X-ray structures of several bacterial homologues as well as very recently also of mouse P-gp have become available.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong1159agnqhfo4feba1o2sgrjennd972t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once