The remarkable electrocatalytic properties and small size of carbon nanotubes make them ideal for achieving direct electron transfer to proteins, important in understanding their redox properties and in the development of biosensors. Here, we report shortened SWNTs can be aligned normal to an electrode by self-assembly and act as molecular wires to allow electrical communication between the underlying electrode and redox proteins covalently attached to the ends of the SWNTs, in this case, microperoxidase MP-11. The efficiency of the electron transfer through the SWNTs is demonstrated by electrodes modified with tubes cut to different lengths having the same electron-transfer rate constant.
View Article and Find Full Text PDFA label free electrochemical method of detecting DNA hybridisation is presented based on the change in flexibility between a single strand of DNA and a duplex causing an ion-gating effect where hybridisation opens up the electrode to access of ions.
View Article and Find Full Text PDF