The need to address the impact of domestication on plant traits is frequently highlighted in modern agriculture. It is often argued that domesticated plants have lost competitive ability due to reduced phenotypic plasticity. This study examines whether domestication has affected competitive ability, functional trait values, and plasticity in durum wheat across 39 genotypes representing four key stages of domestication, from wild progenitors to modern elite varieties.
View Article and Find Full Text PDFThe introduction of Reduced height (Rht) dwarfing genes into elite wheat varieties has contributed to enhanced yield gain in high input agrosystems by preventing lodging. Yet, how modern selection for dwarfing has affected symbiosis remains poorly documented. In this study, we evaluated the response of both the plant and the arbuscular mycorrhizal fungus to plant genetic variation at a major Quantitative Trait Locus called QTL 4B2, known to harbor a Rht dwarfing gene, when forming the symbiosis.
View Article and Find Full Text PDFThe exploration of phenotypic spaces of large sets of plant species has considerably increased our understanding of diversification processes in the plant kingdom. Nevertheless, such advances have predominantly relied on interspecific comparisons that hold several limitations. Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgidum spp.
View Article and Find Full Text PDFMixing crop cultivars has long been considered as a way to control epidemics at the field level and is experiencing a revival of interest in agriculture. Yet, the ability of mixing to control pests is highly variable and often unpredictable in the field. Beyond classical diversity effects such as dispersal barrier generated by genotypic diversity, several understudied processes are involved.
View Article and Find Full Text PDFEstimating plasticity of leaf silicon (Si) in response to abiotic and biotic factors underpins our comprehension of plant defences and stress resistance in natural and agroecosystems. However, how nitrogen (N) addition and intraspecific plant-plant interactions affect Si concentration remains unclear.We grew 19 durum wheat genotypes ( ssp.
View Article and Find Full Text PDFA classic example of phenotypic plasticity in plants is the suit of phenotypic responses induced by a change in the ratio of red to far-red light (R∶FR) as a result of shading, also known as the shade avoidance syndrome (SAS). While the adaptive consequences of this syndrome have been extensively discussed in natural ecosystems, how SAS varies within crop populations and how SAS evolved during crop domestication and breeding remain poorly known. In this study, we grew a panel of 180 durum wheat ( ssp.
View Article and Find Full Text PDFInteractions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages.
View Article and Find Full Text PDFPlant domestication can be viewed as a form of co-evolved interspecific mutualism between humans and crops for the benefit of the two partners. Here, we ask how this plant-human mutualism has, in turn, impacted beneficial interactions within crop species, between crop species, and between crops and their associated microbial partners. We focus on beneficial interactions resulting from three main mechanisms that can be promoted by manipulating genetic diversity in agrosystems: niche partitioning, facilitation, and kin selection.
View Article and Find Full Text PDFAgroecosystem diversification through increased crop genetic diversity could provide multiple services such as improved disease control or increased productivity. However, we still poorly understand how genetic diversity affects agronomic performance. We grew 179 inbred lines of durum wheat in pure stands and in 202 binary mixtures in field conditions.
View Article and Find Full Text PDFSelection of the fittest can promote individual competitiveness but often results in the erosion of group performance. Recently, several authors revisited this idea in crop production and proposed new practices based on selection for cooperative phenotypes, i.e.
View Article and Find Full Text PDFVariety mixtures, the cultivation of different genotypes within a field, have been proposed as a way to increase within-crop diversity, allowing the development of more sustainable agricultural systems with reduced environmental costs. Although mixtures have often been shown to over-yield the average of component varieties in pure stands, decreased yields in mixtures have also been documented. Kin selection may explain such pattern, whenever plants direct helping behaviors preferentially toward relatives and thus experience stronger competition when grown with less related neighbors, lowering seed production of mixtures.
View Article and Find Full Text PDFPhenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro-evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade-off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness.
View Article and Find Full Text PDFReconstructing the demographic history of populations is a central issue in evolutionary biology. Using likelihood-based methods coupled with Monte Carlo simulations, it is now possible to reconstruct past changes in population size from genetic data. Using simulated data sets under various demographic scenarios, we evaluate the statistical performance of Msvar, a full-likelihood Bayesian method that infers past demographic change from microsatellite data.
View Article and Find Full Text PDFThe global extinction of species proceeds through the erosion of local populations. Using a 60-year time series of annual sighting records of plant species, we studied the correlates of local extinction risk associated with a risk of species extinction in the Park Grass Experiment where plants received long-term exposure to nutrient enrichment, soil acidification, and reductions in habitat size. We used multivariate linear models to assess how extrinsic threats and life history traits influence extinction risk.
View Article and Find Full Text PDFThe fine-scale pattern of correlated paternity was characterized within a population of the narrow-endemic model plant species, Centaurea corymbosa, using microsatellites and natural progeny arrays. We used classical approaches to assess correlated mating within sibships and developed a new method based on pairwise kinship coefficients to assess correlated paternity within and among sibships in a spatio-temporal perspective. We also performed numerical simulations to assess the relative significance of different mechanisms promoting correlated paternity and to compare the statistical properties of different estimators of correlated paternity.
View Article and Find Full Text PDFThe mutation process at microsatellite loci typically occurs at high rates and with stepwise changes in allele sizes, features that may introduce bias when using classical measures of population differentiation based on allele identity (e.g., F(ST), Nei's Ds genetic distance).
View Article and Find Full Text PDF