Somatostatin type 2 receptor (SSTR2) radionuclide therapy using β particle-emitting radioligands has entered clinical practice for the treatment of neuroendocrine neoplasms (NENs). Despite the initial success of [Lu]Lu‑DOTA-TATE, theranostic SSTR2 radioligands require improved pharmacokinetics and enhanced compatibility with alternative radionuclides. Consequently, this study evaluates the pharmacokinetic effects of the albumin-binding domain cLAB4 on theranostic performance of copper‑67-labeled NODAGA-TATE variants in an SSTR2-positive mouse pheochromocytoma (MPC) model.
View Article and Find Full Text PDFBackground: In recent years, targeted alpha therapy has gained importance in the clinics, and in particular, the alpha-emitter Ac plays a fundamental role in this clinical development. Nevertheless, depending on the chelating system no real diagnostic alternative has been established which shares similar chemical properties with this alpha-emitting radionuclide. In fact, the race to launch a diagnostic radionuclide to form a matched pair with Ac is still open, and La features attractive radiation properties to claim this place.
View Article and Find Full Text PDFTransarterial radioembolization (TARE) with Ho-loaded microspheres is an established locoregional treatment for hepatocellular carcinoma (HCC), introduced in 2010. This study evaluates the clinical outcome of patients with HCC who underwent Ho-TARE with personalized dosimetry. Twenty-seven patients with 36 TARE procedures were analyzed.
View Article and Find Full Text PDFThis work investigates the proposed enhanced efficacy of photodynamic therapy (PDT) by activating photosensitizers (PSs) with Cherenkov light (CL). The approaches of Yoon et al. to test the effect of CL with external radiation were taken up and refined.
View Article and Find Full Text PDFBackground: The administration of a Ho scout dose is available as an alternative to Tc particles for pre-treatment imaging in Selective Internal Radiation Therapy (SIRT). It has been reported that the Ho scout dose may be more accurate for the prediction of microsphere distribution and the associated therapy planning. The aim of the current study is to compare the scintigraphic imaging characteristics of both isotopes, considering the objectives of the pre-treatment imaging using clinically geared phantoms.
View Article and Find Full Text PDFThis paper reports on the development of stable tumor-specific gold nanoparticles (AuNPs) activated by neutron irradiation as a therapeutic option for the treatment of cancer with high tumor angiogenesis. The AuNPs were designed with different mono- or dithiol-ligands and decorated with different amounts of Arg-Gly-Asp (RGD) peptides as a tumor-targeting vector for αβ integrin, which is overexpressed in tissues with high tumor angiogenesis. The AuNPs were evaluated for avidity in vitro and showed favorable properties with respect to tumor cell accumulation.
View Article and Find Full Text PDFAfter transarterial radioembolization (TARE) with microspheres loaded with holmium-166, radioactivity is excreted from the body. The aim of this study was to evaluate radioactive renal and intestinal excretions after TARE planning and treatment procedures with holmium-166-loaded microspheres and to correlate the findings with the intratherapeutic effective half-life. Urinary and intestinal excretions of patients who underwent TARE procedures were collected during postinterventional intervals of 24 h (TARE planning) and 48 h (TARE treatment).
View Article and Find Full Text PDFPossible enhancements of DNA damage with light of different wavelengths and ionizing radiation (Rhenium-188-a high energy beta emitter (Re-188)) on plasmid DNA and FaDu cells via psoralen were investigated. The biophysical experimental setup could also be used to investigate additional DNA damage due to photodynamic effects, resulting from Cherenkov light. Conformational changes of plasmid DNA due to DNA damage were detected and quantified by gel electrophoresis and fluorescent staining.
View Article and Find Full Text PDFBackground: PET nuclides can have a considerable influence on the spatial resolution and image quality of PET/CT scans, which can influence diagnostics in oncology, for example. The individual impact of the positron energy of F, Ga, and Cu on spatial resolution and image quality was compared for PET/CT scans acquired using a clinical, digital scanner.
Methods: A Jaszczak phantom and a NEMA PET body phantom were filled with F-FDG, Ga-HCl, or Cu-HCl, and PET/CT scans were performed on a Siemens Biograph Vision.
Plant Biotechnol J
October 2022
The polyamine putrescine (1,4-diaminobutane) contributes to cellular fitness in most organisms, where it is derived from the amino acids ornithine or arginine. In the chemical industry, putrescine serves as a versatile building block for polyamide synthesis. The green microalga Chlamydomonas reinhardtii accumulates relatively high putrescine amounts, which, together with recent advances in genetic engineering, enables the generation of a powerful green cell factory to promote sustainable biotechnology for base chemical production.
View Article and Find Full Text PDFDiterpenoids display a large and structurally diverse class of natural compounds mainly found as specialized plant metabolites. Due to their diverse biological functions they represent an essential source for various industrially relevant applications as biopharmaceuticals, nutraceuticals, and fragrances. However, commercial production utilizing their native hosts is inhibited by low abundances, limited cultivability, and challenging extraction, while the precise stereochemistry displays a particular challenge for chemical synthesis.
View Article and Find Full Text PDFThe aim of the study was to increase the uptake of the SSTR2-targeted radioligand Lu-177-DOTATATE using the DNA methyltransferase inhibitor (DNMTi) 5-aza-2'-deoxycytidine (5-aza-dC) and the histone deacetylase inhibitor (HDACi) valproic acid (VPA). The HEKsst and PC3 cells were incubated with variable concentrations of 5-aza-dC and VPA to investigate the uptake of Lu-177-DOTATATE. Cell survival, subsequent to external X-rays (0.
View Article and Find Full Text PDFPurpose: Revisions to German radiation protection laws have resulted in updated limit values, which could affect the unrestricted release of waste produced by nuclear medicine therapy. In addition, signs of long-lived concomitant nuclides in Sm and Ra radiopharmaceuticals have been seen in the past. Therefore, the goal of this article was to analyze the radionuclidic purity of selected radiopharmaceuticals.
View Article and Find Full Text PDFBiotechnological application of the green microalga hinges on the availability of selectable markers for effective expression of multiple transgenes. However, biological safety concerns limit the establishment of new antibiotic resistance genes and until today, only a few auxotrophic markers exist for . The recent improvements in gene editing via CRISPR/Cas allow directed exploration of new endogenous selectable markers.
View Article and Find Full Text PDFAim: The combined internal and external radiotherapy (CIERT) take advantage of the benefits from radionuclide therapy and external beam irradiation. These include steep dose gradients and a low toxicity to normal tissue due to the use of unsealed radioisotopes as well as homogeneous dose distribution within the tumor due to external beam irradiation. For a combined irradiation planning, an infrastructure has to be developed that takes into account the dose contributions from both modalities.
View Article and Find Full Text PDFCombination treatment of molecular targeted and external radiotherapy is a promising strategy and was shown to improve local tumor control in a HNSCC xenograft model. To enhance the therapeutic value of this approach, this study investigated the underlying molecular response. Subcutaneous HNSCC FaDu xenografts were treated with single or combination therapy (X-ray: 0, 2, 4 Gy; anti-EGFR antibody (Cetuximab) (un-)labeled with Yttrium-90 (Y)).
View Article and Find Full Text PDFThe application of Ac (half-life T = 9.92 d) dramatically reduces the activity used for peptide receptor radionuclide therapy by a factor of 1000 in comparison to Y, Lu or Re while maintaining the therapeutic outcome. Additionally, the range of alpha particles of Ac and its daughter nuclides in tissue is much lower (47-85 μm for alpha energies E = 5.
View Article and Find Full Text PDFMicroalgal biotechnology promises sustainable light-driven production of valuable bioproducts and addresses urgent demands to attain a sustainable economy. However, to unfold its full potential as a platform for biotechnology, new and powerful tools for nuclear engineering need to be established. , the model for microalgal synthetic biology and genetic engineering has already been used to produce various bioproducts.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2021
This paper reports on the development of tumor-specific gold nanoparticles (AuNPs) as theranostic tools intended for target accumulation and the detection of tumor angiogenesis via optical imaging (OI) before therapy is performed, being initiated via an external X-ray irradiation source. The AuNPs were decorated with a near-infrared dye, and RGD peptides as the tumor targeting vector for αβ-integrin, which is overexpressed in tissue with high tumor angiogenesis. The AuNPs were evaluated in an optical imaging setting in vitro and in vivo exhibiting favorable diagnostic properties with regards to tumor cell accumulation, biodistribution, and clearance.
View Article and Find Full Text PDFModern chemical industry calls for new resource-efficient and sustainable value chains for production of key base chemicals such as polyamines. The green microalga Chlamydomonas reinhardtii offers great potential as an innovative green-cell factory by combining fast and inexpensive, phototrophic growth with mature genetic engineering. Here, overexpression of recombinant lysine decarboxylases in C.
View Article and Find Full Text PDF