Publications by authors named "Fretz H"

Systemic lupus erythematosus (SLE) is an autoimmune disease that often leads to functional disorder in multiple organs, most often with symptoms related to skin lesions, cardiovascular disease and kidney damage. Although significant efforts have been made to find efficient therapies, it still remains uncured. Furthermore, the current therapy is often associated with adverse side effects and leads to a high economic burden for society.

View Article and Find Full Text PDF

Various racemic and enantioenriched (trans)-X,Y-dihydroxy-X,Y-dihydronaphthoyl analogues as well as X-hydroxy-naphthoyl analogues of CRTh2 antagonist 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid (1, Setipiprant/ACT-129968) were synthesized in order to gain insight into regio- and enantioselectivity of the metabolic oxidation of 1 and to verify the structures of four metabolites that were proposed earlier in a clinical ADME study. Analytical data of the synthetic standards were compared with data from samples of biological origin. The two major metabolites M7 and M9 were unambiguously verified as 2-(2-((trans)-3,4-dihydroxy-3,4-dihydronaphthalene-1-carbonyl)- and 2-(2-((trans)-5,6-dihydroxy-5,6-dihydronaphthalene-1-carbonyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid, respectively, each composed of two enantiomers with 68% and 44% ee in favor of (+)-(3S,4S)-M7 and (+)-(5S,6S)-M9, respectively.

View Article and Find Full Text PDF

Herein we describe the discovery of the novel CRTh2 antagonist 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid 28 (setipiprant/ACT-129968), a clinical development candidate for the treatment of asthma and seasonal allergic rhinitis. A lead optimization program was started based on the discovery of the recently disclosed CRTh2 antagonist 2-(2-benzoyl-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid 5. An already favorable and druglike profile could be assessed for lead compound 5.

View Article and Find Full Text PDF

(E)-2-(3-(3-((3-Bromophenyl)amino)-2-cyano-3-oxoprop-1-en-1-yl)-1H-indol-1-yl)acetic acid (1) was discovered in a HTS campaign for CRTh2 receptor antagonists. An SAR around this hit could be established and representatives with interesting activity profiles were obtained. Ring closing tactics to convert this hit series into a novel 2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole based CRTh2 receptor antagonist series is presented.

View Article and Find Full Text PDF

Hit-to-lead evolution of 2-(2-((2-(4-chlorophenoxy)ethyl)thio)-1H-benzo[d]imidazol-1-yl)acetic acid (1), discovered in a high-throughput screening campaign as a novel chemotype of CRTh2 receptor antagonist, is presented. SAR development as well as in vitro and in vivo DMPK properties of selected representatives of substituted 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl)acetic acids are discussed.

View Article and Find Full Text PDF

Many components of mitogenic signaling pathways in normal and neoplastic cells have been identified, including the large family of protein kinases, which function as components of signal transduction pathways, playing a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Because of their deregulation in human cancers, protein kinases, such as Bcr-Abl, those in the epidermal growth factor-receptor (HER) family, the cell cycle regulating kinases such as the cyclin-dependent kinases, as well as the vascular endothelial growth factor-receptor kinases involved in the neo-vascularization of tumors, are among the protein kinases considered as prime targets for the development of selective inhibitors.

View Article and Find Full Text PDF

Novel 2-benzylidene-benzofuran-3-ones were designed and synthesized to mimic flavopiridol, a well-established inhibitor of cyclin-dependent kinases (CDKs) which is currently undergoing clinical evaluation. The underlying design concepts as well as the synthesis and structure-activity relationships (CDKs 1, 2, and 4 enzyme assays) of these mimics are described. Inhibitors of CDKs 1 and 2 that are more potent and selective than flavopiridol were obtained.

View Article and Find Full Text PDF

We have selected cyclin-dependent kinase 1 (CDK1), an enzyme participating in the regulation of the cell cycle, as a target in our efforts to discover new antitumor agents. By exploiting available structural information, we designed an ATP-site directed ligand scaffold that allowed us to identify 4-(3-methyl-1,4-dioxo-1,4-dihydro-naphthalen-2-ylamino)-benzenesulfonamide as a new potent inhibitor of CDK1 in a subsequent database search. The synthesis and testing of some analogues confirmed the interest of this class of compounds as novel CDK1 inhibitors.

View Article and Find Full Text PDF

Association of fascaplysin with double-stranded calf thymus DNA was investigated by means of isothermal titration calorimetry, absorption spectroscopy, and circular dichroism. The UV spectroscopic data could be well interpreted in terms of a two-site model for the binding of fascaplysin to DNA revealing affinity constants of K1 = 2.5 x 10(6) M(-1) and K2 = 7.

View Article and Find Full Text PDF

Background: Cyclin-dependent kinase 4 (Cdk4) represents a prime target for the treatment of cancer because most human cancers are characterized by overexpression of its activating partner cyclin D1, loss of the natural Cdk4-specific inhibitor p16, or mutation(s) in Cdk4's catalytic subunit. All of these can cause deregulated cell growth, resulting in tumor formation. We sought to identify a small molecule that could inhibit the kinase activity of Cdk4 in vitro and to then ascertain the effects of that inhibitor on cell growth and tumor volume in vivo.

View Article and Find Full Text PDF

Receptor protein tyrosine kinases are usually activated upon binding their growth factors, or other suitable ligands, to their extracellular domains. These activated receptors initiate cytoplasmic signalling cascades which, when aberrant, can result in different disease states, such as oncogenic transformation. Many receptor protein tyrosine kinases use Src homology 2 domains (SH2) to couple growth factor activation with intracellular signalling pathways to mediate cell control and other biological events.

View Article and Find Full Text PDF

Based on X-ray crystal structure information, mono charged phosphinate isosteres of phosphotyrosine have been designed and incorporated in a short inhibitory peptide sequence of the Grb2-SH2 domain. The resulting compounds, by exploiting additional interactions, inhibit binding to the Grb2-SH2 domain as potently as the corresponding doubly charged (phosphonomethyl)phenylalanine analogue.

View Article and Find Full Text PDF

Small chemical molecules that interfere with biological proteins could be useful for gaining insight into the complex biochemical processes in mammalian cells. Cdk4 is a key protein whose activity is required not only for emergence of cells from quiescence but also at the G1/S transition in the cell cycle and which is misregulated in 60-70% of human cancers. We set out to identify chemical inhibitors of Cdk4 and discovered that, in vitro, fascaplysin specifically inhibited Cdk4.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) is a potent mitogen that effects a wide variety of cells by blocking cell growth. TGF-beta acts by interacting with components of cell cycle machinery to cause G1 arrest and in mink lung epithelial cells (Mv1Lu) it does so by inhibiting Cdk4 synthesis. Overexpression of Cdk4 in these cells (B7) renders them resistant to the effects of TGF-beta.

View Article and Find Full Text PDF

Human neuropeptide Y (hNPY) and the Q34-->P34 mutant (P34-hNPY) have been characterized by CD spectroscopy. hNPY self-associates in aqueous solution with a dimerization constant in the micromolar range. The self-association correlates with an increase in secondary-structure content which was studied as a function of concentration, temperature and pH.

View Article and Find Full Text PDF

Highly potent inhibitors of the Grb2-SH2 domain have been synthesized. They share the common sequence: Ac-Pmp-Ac6c-Asn-NH-(3-indolyl-propyl). Different substituents at the 3-indolyl-propylamine C-terminal group were explored to further improve the activity.

View Article and Find Full Text PDF

We have designed and synthesized a (3-aminomethyl-phenyl)-urea scaffold to mimic the X+1-Asn part of the minimal phosphopeptide sequence, Ac-pTyr-X+1-Asn-NH2, recognized by the Grb2-SH2 domain. The resulting compounds show the same degree of affinity as their peptide counterparts for the Grb2-SH2 domain. This is the first example reported to date of ligands of the Grb2-SH2 domain with substantially reduced peptidic character.

View Article and Find Full Text PDF

The X-ray structure of the Grb2-SH2 domain in complex with a specific phosphopeptide ligand has revealed the existence of an extended hydrophobic area adjacent to the primary binding site of the ligand on the SH2 domain. This has been exploited to design hydrophobic C-terminal groups that improve the binding affinity of the minimal sequence pTyr-Ile-Asn recognized by the Grb2-SH2 domain. The most significant increase in affinity (25-fold compared to that of the reference peptide having a nonsubstituted carboxamide C-terminus) was obtained with a 3-naphthalen-1-yl-propyl group which was predicted to have the largest contact area with the SH2 domain hydrophobic region.

View Article and Find Full Text PDF

An anthranyl moiety placed at the N terminus of a phosphotyrosine peptide potentiates the inhibitory effect of this small peptide on the binding of the Grb2 SH2 domain to the EGF receptor. Using molecular modeling procedures based on the Lck SH2 domain structure, this observation was rationalized in terms of a suitably favorable pi-pi stacking interaction between the anthranyl moiety and the arginine alphaA2 (ArgalphaA2) residue side-chain of Grb2 SH2. The crystal structure of the Grb2 SH2 domain in complex with the inhibitor 2-Abz-EpYINQ-NH2 (IC50 26 nM) has been solved in two different crystal forms at 2.

View Article and Find Full Text PDF

The observation that anthranilic acid as N-terminal group produces a dramatic increase of the binding affinity of the phosphopeptide sequence Glu-pTyr-Ile-Asn for the Grb2-SH2 domain was rationalized by molecular modeling. The model, which invokes a stacking interaction between the N-terminal group and the SH2 domain residue Arg alpha A2, was subsequently used to design the 3-aminobenzyloxycarbonyl N-terminal group. The latter confers high affinity (IC50 = 65 nM in an ELISA assay) to the minimal sequence pTyr-Ile-Asn recognized by the Grb2-SH2 domain.

View Article and Find Full Text PDF

SH2 domains mediate protein-protein interactions and are involved in a wide range of intracellular signaling events. SH2 domains are 100-amino acid stretches of protein that bind to other proteins containing phosphotyrosine residues. A current major research goal is formulation of the structural principles which govern peptide-binding specificity in SH2 domains.

View Article and Find Full Text PDF

The substrate specificity of the enzyme tocopherol cyclase from the blue-green algae Anabaena variabilis (Cyanobacteria) was investigated with 11 substrate analogues revealing the significance of three major recognition sites: (i) the OH group at C(1) of the hydroquinone, (ii) the (E) configuration of the double bond, and (iii) the length of the lipophilic side chain. Experiments with two affinity matrices suggest that substrates approach the enzyme's active site with the hydrophobic tail.

View Article and Find Full Text PDF