CR-39 proton radiography is an experimental charged-particle backlighter platform fielded and used at OMEGA and the NIF to image electric and magnetic fields in a subject plasma. Processing a piece of CR-39 involves etching it in hot NaOH, and the etch time can greatly impact the background-to-signal ratio (BSR) in low-fluence (≲4 × 104 cm-2) regions and detection efficiency in high-fluence regions (≳7 × 105 cm-2). For CR-39 data with high fluence variation, these effects mean that any single etch time will result in ≳15% error in the measured signal in either the high- or low-fluence regions.
View Article and Find Full Text PDFRev Sci Instrum
October 2024
The SPARC tokamak is a high-field, Bt0 ∼12 T, medium-sized, R0 = 1.85 m, tokamak that is presently under construction in Devens, MA, led by Commonwealth Fusion Systems. It will be used to de-risk the high-field tokamak path to a fusion power plant and demonstrate the commercial viability of fusion energy.
View Article and Find Full Text PDFNeutron measurement is the primary tool in the SPARC tokamak for fusion power (Pfus) monitoring, research on the physics of burning plasmas, validation of the neutronics simulation workflows, and providing feedback for machine protection. A demanding target uncertainty (10% for Pfus) and coverage of a wide dynamic range (>8 orders of magnitude going up to 5 × 1019 n/s), coupled with a fast-track timeline for design and deployment, make the development of the SPARC neutron diagnostics challenging. Four subsystems are under design that exploit the high flux of direct DT and DD plasma neutrons emanating from a shielded opening in a midplane diagnostic port.
View Article and Find Full Text PDFThe Particle Time of Flight (PTOF) detector is a chemical vapor deposition diamond-based detector used to measure bang times in low-yield (≲ 1015 neutrons) experiments at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Historically, the impulse response for PTOF diamond detectors has been obtained from x-ray timing shots on the NIF and shots on the MegaRay pulsed electron accelerator at LLNL. The impulse response may alternatively be obtained using single particle interactions with the detector, at substantially less cost and higher frequency compared to NIF timing shots, which typically occur months apart.
View Article and Find Full Text PDFRev Sci Instrum
October 2024
This paper reports on investigations on the impact of higher neutron fluences on the detection efficiency of protons with CR-39, a charged particle track detector. CR-39 is widely used as a diagnostic for inertial fusion applications and is an integral component of numerous particle diagnostics at the OMEGA laser facility and National Ignition Facility. As experiments continue to produce higher and higher yields, existing diagnostics are impacted by higher particle fluences than they were originally designed for.
View Article and Find Full Text PDFA magnetic proton recoil (MPR) neutron spectrometer is being designed for SPARC, a high magnetic field (BT = 12 T), compact (R0 = 1.85 m, a = 0.57 m) tokamak currently under construction in Devens, MA, USA.
View Article and Find Full Text PDFRev Sci Instrum
September 2024
Image plates (IPs) are a quickly recoverable and reusable radiation detector often used to measure proton and x-ray fluence in laser-driven experiments. Recently, IPs have been used in a proton radiography detector stack on the OMEGA laser, a diagnostic historically implemented with CR-39, or radiochromic film. The IPs used in this and other diagnostics detect charged particles, neutrons, and x-rays indiscriminately.
View Article and Find Full Text PDFRev Sci Instrum
September 2024
Image plates (IPs), or phosphor storage screens, are a technology employed frequently in inertial confinement fusion (ICF) and high energy density plasma (HEDP) diagnostics because of their sensitivity to many types of radiation, including, x rays, protons, alphas, beta particles, and neutrons. Prior studies characterizing IPs are predicated on the signal level remaining below the scanner saturation threshold. Since the scanning process removes some signal from the IP via photostimulated luminescence, repeatedly scanning an IP can bring the signal level below the scanner saturation threshold.
View Article and Find Full Text PDFInertial Confinement Fusion and Magnetic Confinement Fusion (ICF and MCF) follow different paths toward goals that are largely common. In this paper, the claim is made that progress can be accelerated by learning from each other across the two fields. Examples of successful cross-community knowledge transfer are presented that highlight the gains from working together, specifically in the areas of high-resolution x-ray imaging spectroscopy and neutron spectrometry.
View Article and Find Full Text PDFRadiochromic film (RCF) and image plates (IPs) are both commonly used detectors in diagnostics fielded at inertial confinement fusion (ICF) and high-energy-density physics (HEDP) research facilities. Due to the intense x-ray background in all ICF/HEDP experiments, accurately calibrating the optical density of RCF as a function of x-ray dose, and the photostimulated luminescence per photon of IPs as a function of x-ray energy, is necessary for interpreting experimental results. Various measurements of the sensitivity curve of different IPs to x rays have been performed [Izumi et al.
View Article and Find Full Text PDFThe next-generation magnetic recoil spectrometer (MRSnext) is being designed to replace the current MRS at the National Ignition Facility and OMEGA for measurements of the neutron spectrum from an inertial confinement fusion implosion. The MRSnext will provide a far-superior performance and faster data turnaround than the current MRS systems, i.e.
View Article and Find Full Text PDFA compact and portable gamma-ray spectrometer has been designed to diagnose different components of the inertial confinement fusion-relevant γ-ray spectrum with energies between ∼3.7-17.9 MeV.
View Article and Find Full Text PDFShock-driven implosions with 100% deuterium (D_{2}) gas fill compared to implosions with 50:50 nitrogen-deuterium (N_{2}D_{2}) gas fill have been performed at the OMEGA laser facility to test the impact of the added mid-Z fill gas on implosion performance. Ion temperature (T_{ion}) as inferred from the width of measured DD-neutron spectra is seen to be 34%±6% higher for the N_{2}D_{2} implosions than for the D_{2}-only case, while the DD-neutron yield from the D_{2}-only implosion is 7.2±0.
View Article and Find Full Text PDF3D asymmetries are major degradation mechanisms in inertial-confinement fusion implosions at the National Ignition Facility (NIF). These asymmetries can be diagnosed and reconstructed with the neutron imaging system (NIS) on three lines of sight around the NIF target chamber. Conventional tomographic reconstructions are used to reconstruct the 3D morphology of the implosion using NIS [Volegov et al.
View Article and Find Full Text PDFPenumbral imaging is a technique used in plasma diagnostics in which a radiation source shines through one or more large apertures onto a detector. To interpret a penumbral image, one must reconstruct it to recover the original source. The inferred source always has some error due to noise in the image and uncertainty in the instrument geometry.
View Article and Find Full Text PDFIndirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.
View Article and Find Full Text PDFA more complete understanding of laser-driven hohlraum plasmas is critical for the continued development and improvement of ICF experiments. In these hohlraums, self-generated electric and magnetic fields can play an important role in modifying plasma properties such as heat transport; however, the strength and distribution of electromagnetic fields in such hohlraums remain largely uncertain. To explore this question, we conducted experiments at the OMEGA laser facility, using monoenergetic proton radiography to probe laser-driven vacuum hohlraums.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
The National Diagnostic Working Group (NDWG) has led the effort to fully exploit the major inertial confinement fusion/high-energy density facilities in the US with the best available diagnostics. These diagnostics provide key data used to falsify early theories for ignition and suggest new theories, recently leading to an experiment that exceeds the Lawson condition required for ignition. The factors contributing to the success of the NDWG, collaboration and scope evolution, and the methods of accomplishment of the NDWG are discussed in this Review.
View Article and Find Full Text PDFThe ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production.
View Article and Find Full Text PDFThe Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond detector used for measuring multiple nuclear bang times at the National Ignition Facility. Due to the non-trivial, polycrystalline structure of these detectors, individual characterization and measurement are required to interrogate the sensitivity and behavior of charge carriers. In this paper, a process is developed for determining the x-ray sensitivity of PTOF detectors and relating it to the intrinsic properties of the detector.
View Article and Find Full Text PDFWe report on measurements of the ion-electron energy-transfer cross section utilizing low-velocity ion stopping in high-energy-density plasmas at the OMEGA laser facility. These measurements utilize a technique that leverages the close relationship between low-velocity ion stopping and ion-electron equilibration. Shock-driven implosions of capsules filled with D^{3}He gas doped with a trace amount of argon are used to generate densities and temperatures in ranges from 1×10^{23} to 2×10^{24} cm^{-3} and from 1.
View Article and Find Full Text PDFCharged particle spectrometry is a critical diagnostic to study inertial-confinement-fusion plasmas and high energy density plasmas. The OMEGA Laser Facility has two fixed magnetic charged particle spectrometers (CPSs) to measure MeV-ions. In situ calibration of these spectrometers was carried out using Am and Ra alpha emitters.
View Article and Find Full Text PDF