Background: Digital health applications (DiGA) supporting the management of diabetes are among the most commonly available digital health technologies. However, transparent quality assurance of DiGA and clinical proof of a positive healthcare effect is often missing, which creates skepticism of some stakeholders regarding the usage and reimbursement of these applications.
Methods: This article reviews the recently established fast-track integration of DiGA in the German reimbursement market, with emphasis on the current impact for manufacturers, healthcare providers, and people with diabetes.
Large metabolomics datasets inevitably contain unwanted technical variations which can obscure meaningful biological signals and affect how this information is applied to personalized healthcare. Many methods have been developed to handle unwanted variations. However, the underlying assumptions of many existing methods only hold for a few specific scenarios.
View Article and Find Full Text PDFBiological exploration of early biomarkers for chronic kidney disease (CKD) in (pre)diabetic individuals is crucial for personalized management of diabetes. Here, we evaluated two candidate biomarkers of incident CKD (sphingomyelin (SM) C18:1 and phosphatidylcholine diacyl (PC aa) C38:0) concerning kidney function in hyperglycemic participants of the Cooperative Health Research in the Region of Augsburg (KORA) cohort, and in two biofluids and six organs of leptin receptor-deficient (db/db) mice and wild type controls. Higher serum concentrations of SM C18:1 and PC aa C38:0 in hyperglycemic individuals were found to be associated with lower estimated glomerular filtration rate (eGFR) and higher odds of CKD.
View Article and Find Full Text PDFBackground: Type 2 diabetes represents an increasingly critical challenge for health policy worldwide. It absorbs massive resources from both patients and national economies to sustain direct costs of the treatment of type 2 diabetes and its complications and indirect costs related to work loss and wages. More recently, there are innovations based on remote control and personalised programs that promise a more cost-effective diabetes management while reducing diabetes-related complications.
View Article and Find Full Text PDFType 2 diabetes mellitus represents a multi-dimensional challenge for European and global societies alike. Building on an iterative six-step disease management process that leverages feedback loops and utilizes commodity digital tools, the PDM-ProValue study program demonstrated that integrated personalized diabetes management, or iPDM, can improve the standard of care for persons living with diabetes in a sustainable way. The novel "iPDM Goes Europe" consortium strives to advance iPDM adoption by (1) implementing the concept in a value-based healthcare setting for the treatment of persons living with type 2 diabetes, (2) providing tools to assess the patient's physical and mental health status, and (3) exploring new avenues to take advantage of emerging big data resources.
View Article and Find Full Text PDFEarly and precise identification of individuals with prediabetes and type 2 diabetes (T2D) at risk for progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolite biomarkers and the best set of predictors of CKD in the longitudinal, population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort by targeted metabolomics and machine learning approaches. Out of 125 targeted metabolites, sphingomyelin C18:1 and phosphatidylcholine diacyl C38:0 were identified as candidate metabolite biomarkers of incident CKD specifically in hyperglycemic individuals followed during 6.
View Article and Find Full Text PDFAim: To examine the glucose-lowering mechanisms of the glucagon-like peptide-1 receptor agonist lixisenatide after two subsequent meals and in combination with basal insulin.
Materials And Methods: Twenty-eight metformin-treated patients with type 2 diabetes were randomly assigned to treatment sequences with either lixisenatide or insulin glargine alone for 4 weeks, and a combination of both treatments for 4 weeks. Metabolic examinations were performed before and after each treatment period following breakfast and a late lunch 8 hours later.
In the last 10 years tremendous progress has been made in the development of artificial pancreas (AP) systems for people with type 1 diabetes (T1D). The pan-European consortium CLOSE (Automated Glu cose Contro l at H ome for People with Chronic Disea se) is aiming to develop integrated AP solutions (APplus) tailored to the needs of people with type 2 diabetes (T2D). APplus comprises a product and service package complementing the AP system by obligatory training as well as home visits and telemedical consultations on demand.
View Article and Find Full Text PDFIt is known that β-cell function can be enhanced by direct stimulation of insulin secretion or by induction of β-cell rest, but whether both strategies can complement each other has not yet been examined. A total of 28 people with type 2 diabetes (glycated haemoglobin 7.8% ± 0.
View Article and Find Full Text PDFAims/hypothesis: Sodium glucose co-transporter 2 (SGLT2) inhibitors lower glycaemia by inducing glycosuria, but raise endogenous glucose production (EGP). Metformin lowers glycaemia mainly by suppressing EGP. We compared the effects of the SGLT2 inhibitor empagliflozin in treatment-naive (TN) and metformin pretreated (Met) patients with type 2 diabetes.
View Article and Find Full Text PDFIn the nervous system, NMDA receptors (NMDARs) participate in neurotransmission and modulate the viability of neurons. In contrast, little is known about the role of NMDARs in pancreatic islets and the insulin-secreting beta cells whose functional impairment contributes to diabetes mellitus. Here we found that inhibition of NMDARs in mouse and human islets enhanced their glucose-stimulated insulin secretion (GSIS) and survival of islet cells.
View Article and Find Full Text PDFAims/hypothesis: Type 2 diabetes has been associated with upper gastrointestinal motility dysfunction, but the relationship with diabetes duration and glucose control is less well understood. Gastric emptying, oesophageal motility and gastrointestinal symptoms were examined in volunteers with diabetes, prediabetes (impaired fasting glucose [IFG] or impaired glucose tolerance [IGT]) and normal glucose tolerance (NGT).
Methods: The study included 41 patients with type 2 diabetes, 17 individuals with IFG/IGT and 31 individuals with NGT.
Unlabelled: The impairment of hepatic metabolism due to liver injury has high systemic relevance. However, it is difficult to calculate the impairment of metabolic capacity from a specific pattern of liver damage with conventional techniques. We established an integrated metabolic spatial-temporal model (IM) using hepatic ammonia detoxification as a paradigm.
View Article and Find Full Text PDFHepatic encephalopathy (HE) is a clinical manifestation of a low grade cerebral edema with a mutual interrelationship between osmotic- and oxidative stress. This leads to RNA oxidation and posttranslational protein modifications such as protein tyrosine nitration with pathophysiological relevance. Here, we report on O-GlcNAcylation as another ammonia-induced posttranslational protein modification in cultured rat astrocytes.
View Article and Find Full Text PDFArch Biochem Biophys
August 2013
Hepatic encephalopathy (HE) is a neuropsychiatric complication of acute or chronic liver failure. Currently, HE in cirrhotic patients is seen as a clinical manifestation of a low grade cerebral edema which exacerbates in response to a variety of precipitating factors after an ammonia-induced exhaustion of the volume-regulatory capacity of the astrocyte. Astrocyte swelling triggers a complex signaling cascade which relies on NMDA receptor activation, elevation of intracellular Ca(2+) concentration and prostanoid-driven glutamate exocytosis, which result in increased formation of reactive nitrogen and oxygen species (RNOS) through activation of NADPH oxidase and nitric oxide synthase.
View Article and Find Full Text PDFBetaine critically contributes to the control of hepatocellular hydration and provides protection of the liver from different kinds of stress. To investigate how the hepatocellular hydration state affects gene expression of enzymes involved in the metabolism of betaine and related organic osmolytes, we used quantitative RT-PCR gene expression studies in rat hepatoma cells as well as metabolic and gene expression profiling in primary hepatocytes of both wild-type and 5,10-methylenetetrahydrofolate reductase (MTHFR)-deficient mice. Anisotonic incubation caused coordinated adaptive changes in the expression of various genes involved in betaine metabolism, in particular of betaine homocysteine methyltransferase, dimethylglycine dehydrogenase, and sarcosine dehydrogenase.
View Article and Find Full Text PDFAmmonia is a major player in the pathogenesis of hepatic encephalopathy (HE) and affects astrocyte function by triggering a self-amplifying cycle between osmotic and oxidative stress. We recently demonstrated that hypoosmotic astrocyte swelling rapidly stimulates nitric oxide (NO) production and increases intracellular free Zn(2+) concentration ([Zn(2+)](i)). Here we report effects of ammonia on [Zn(2+)](i) homeostasis and NO synthesis.
View Article and Find Full Text PDFHepatic encephalopathy is a neuropsychiatric manifestation of acute and chronic liver failure. Ammonia plays a key role in the pathogenesis of hepatic encephalopathy by inducing astrocyte swelling and/or sensitizing astrocytes to swelling by a heterogeneous panel of precipitating factors and conditions. Whereas astrocyte swelling in acute liver failure contributes to a clinically overt brain edema, a low grade glial edema without clinically overt brain edema is observed in hepatic encephalopathy in liver cirrhosis.
View Article and Find Full Text PDFAstrocyte swelling is observed in different types of brain injury including hepatic encephalopathy (HE). This study investigates the role of astrocyte swelling on Zn2+ homeostasis in hypoosmotically treated astrocytes by using the Zn2+ indicators Newport-Green, Zinquin, and RhodZin-3. Hypoosmolarity (205 mosmol/L) led to a persistent increase of the intracellular "free" Zn2+ concentration [Zn2+](i) within 15 min, which was reversible after reinstitution of normoosmolarity (305 mosmol/L).
View Article and Find Full Text PDFUnlabelled: Oxidative stress plays a major role in cerebral ammonia toxicity and the pathogenesis of hepatic encephalopathy (HE). As shown in this study, ammonia induces a rapid RNA oxidation in cultured rat astrocytes, vital mouse brain slices, and rat brain in vivo. Ammonia-induced RNA oxidation in cultured astrocytes is reversible and sensitive to MK-801, 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, apocynin, epigallocatechin gallate, and polyphenon 60, suggesting the involvement of N-methyl-D-aspartic acid (NMDA) receptor activation, Ca(2+), nicotinamide adenine dinucleotide phosphate, and reduced form (NADPH) oxidase-dependent oxidative stress.
View Article and Find Full Text PDFBackground/aims: The role of bile acids for insulin resistance in cholestatic liver disease is unknown.
Methods: The effect of taurolithocholic acid-3 sulfate (TLCS) on insulin signaling was studied in cultured rat hepatocytes and perfused rat liver.
Results: TLCS induced insulin resistance at the level of insulin receptor (IR) beta Tyr(1158) phosphorylation, phosphoinositide (PI) 3-kinase activity and protein kinase (PK)B Ser(473) phosphorylation in cultured hepatocytes.
Volume changes of mammalian cells as induced by either anisoosmolarity or under isoosmotic conditions by hormones, substrates and oxidative stress critically contribute to the regulation of metabolism, gene expression and the susceptibility to stress. Osmosensing (i.e.
View Article and Find Full Text PDFChanges in hepatocyte hydration are induced not only by ambient hypo- or hyperosmolarity, but also under isosmotic condition by hormones, substrates, and oxidative stress. The perfused rat liver is a well-established intact organ model with preservation of the three-dimensional hepatocyte anchoring to the extracellular matrix and/or adjacent cells, parenchymal cell polarity, liver cell heterogeneity, acinar construction, and gene expression gradients. Originally, data from the perfused rat liver indicated that changes of cell hydration independent of their origin critically contribute to the control of autophagic proteolysis and canalicular bile acid excretion.
View Article and Find Full Text PDFCell Physiol Biochem
September 2007
Cell hydration changes play a key role in the regulation of cell function and critically affect insulin sensitivity of carbohydrate- and protein metabolism. Here, the modulation of gene expression profiles by hyperosmolarity and insulin was examined in H4IIE rat hepatoma cells by cDNA/oligonucleotiode array-, Northern- and Western blot analysis. Osmosensitive expression of the insulin-like growth factor binding protein Igfbp1, the multidrug resistance protein Mrp5 (Abcc5a) and cyclin D1 (Ccnd1) was established at the mRNA and protein level.
View Article and Find Full Text PDFThe role of NADPH oxidase (NOX) and the regulatory subunit p47(phox) for hypoosmotic ROS generation was studied in cultured rat astrocytes and brain slices of wilde type and p47(phox) knock-out mice. Cultured rat astrocytes express mRNAs encoding for the regulatory subunit p47(phox), NOX1, 2, and 4, and the dual oxidases (DUOX)1 and 2, but not NOX3. Hypoosmotic (205 mosmol/L) swelling of cultured astrocytes induced a rapid generation of ROS that was accompanied by serine phosphorylation of p47(phox) and prevented by the NADPH oxidase inhibitor apocynin.
View Article and Find Full Text PDF