Human placental annexin IV, a member of the annexin family of calcium and phospholipid-binding proteins, has been crystallized by the vapour diffusion method in the presence of calcium, using polyethylene glycol 8000. The crystals are orthorhombic, space C222(1), cell dimensions a = 105.4 A, b = 115.
View Article and Find Full Text PDFTwo associated calcium-binding proteins (CaBPs) have recently been identified specifically in cells of myeloid origin. These proteins have relative molecular masses (Mr) of 8,000 and 14,000 and are variously referred to as the cystic fibrosis antigen, the L1 light chain, MRP-8 or p8, and the L1 heavy chain, MRP14 or p14, respectively. The expression of p8 and p14 seems to be confined to a specific stage of myeloid cell differentiation, because both proteins are expressed in circulating neutrophils and monocytes but not in normal tissue macrophages.
View Article and Find Full Text PDFThe ability to determine protein structures by X-ray crystallography is often thwarted by the difficulty of finding isomorphous heavy-atom derivatives. The crystal structure of the site-specific recombinase, resolvase, has been difficult to determine for this reason. We have overcome this problem by introducing 13 single cysteine substitutions into the resolvase catalytic domain using oligonucleotide mutagenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 1988
High-resolution crystal structures of editing complexes of both duplex and single-stranded DNA bound to Escherichia coli DNA polymerase I large fragment (Klenow fragment) show four nucleotides of single-stranded DNA bound to the 3'-5' exonuclease active site and extending toward the polymerase active site. Melting of the duplex DNA by the protein is stabilized by hydrophobic interactions between Phe-473, Leu-361, and His-666 and the last three bases at the 3' terminus. Two divalent metal ions interacting with the phosphodiester to be hydrolyzed are proposed to catalyze the exonuclease reaction by a mechanism that may be related to mechanisms of other enzymes that catalyze phospho-group transfer including RNA enzymes.
View Article and Find Full Text PDFJ Mol Biol
September 1988
Crystals of the DNA glucosylating enzyme beta-glucosyltransferase from phage T4 have been grown in the presence of uridine diphosphate glucose. The crystals are orthorhombic, space group P2(1)2(1)2 with a = 148.3 A, b = 52.
View Article and Find Full Text PDFThymidine kinase from herpes simplex virus type 1 (ATP:thymidine 5'-phosphotransferase; EC 2.7.1.
View Article and Find Full Text PDFSite-directed mutagenesis of the large fragment of DNA polymerase I (Klenow fragment) yielded two mutant proteins lacking 3',5'-exonuclease activity but having normal polymerase activity. Crystallographic analysis of the mutant proteins showed that neither had any alteration in protein structure other than the expected changes at the mutation sites. These results confirmed the presumed location of the exonuclease active site on the small domain of Klenow fragment and its physical separation from the polymerase active site.
View Article and Find Full Text PDFThe complete amino acid sequence of human skeletal-muscle fructose-bisphosphate aldolase, comprising 363 residues, was determined. The sequence was deduced by automated sequencing of CNBr-cleavage, o-iodosobenzoic acid-cleavage, trypsin-digest and staphylococcal-proteinase-digest fragments. Comparison of the sequence with other class I aldolase sequences shows that the mammalian muscle isoenzyme is one of the most highly conserved enzymes known, with only about 2% of the residues changing per 100 million years.
View Article and Find Full Text PDFThe results of several secondary-structure prediction programs were combined to produce an estimate of the regions of alpha-helix, beta-sheet and reverse turns for fructose-bisphosphate aldolases from human and rat muscle and liver, from Trypanosoma brucei and from Drosophila melanogaster. All the aldolase sequences gave essentially the same pattern of secondary-structure predictions despite having sequences up to 50% different. One exception to this pattern was an additional strongly predicted helix in the rat liver and Drosophila enzymes.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
September 1988
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site.
View Article and Find Full Text PDFFructose-1,6-bisphosphate aldolase was purified from human skeletal-muscle by affinity elution chromatography. Four CNBr-cleavage fragments were purified by gel filtration, and their N-terminal amino acid sequences were determined. Cleavage with o-iodosobenzoic acid at the three tryptophan residues also yielded fragments suitable for N-terminal sequence analysis.
View Article and Find Full Text PDF