Publications by authors named "Freemont P"

Indolocarbazoles are natural products with a broad spectrum of bioactivity. A distinct feature of indolocarbazole biosynthesis is the modification of the indole and maleimide rings by regioselective tailoring enzymes. Here, we study a new indolocarbazole variant, which is encoded by the acfXODCP genes from Streptomyces venezuelae ATCC 10712.

View Article and Find Full Text PDF
Article Synopsis
  • Urinary tract infections (UTIs) significantly contribute to hospitalizations and fatalities among individuals with dementia compared to matched controls and those with diabetes.
  • A large study analyzed data from over 2.4 million people aged 50+ in Wales between 2000-2021, finding that UTIs in dementia and diabetes were linked to increased mortality rates, especially in those with both conditions.
  • Delayed or untreated UTIs led to a notable increase in the risk of death, with 5.4% of untreated individuals with dementia dying within 60 days after diagnosis, rising to 5.9% for those also having diabetes.
View Article and Find Full Text PDF
Article Synopsis
  • UTIs are common in older adults and especially impact those with dementia, making early detection essential due to barriers in reporting symptoms.
  • Researchers tested low-cost home monitoring devices that track activity and physiology to develop an algorithm that predicts UTI risk, using data from over 27,000 person-days of monitoring.
  • The developed machine learning model shows promising sensitivity (74.7%) and specificity (87.9%) for identifying UTIs, utilizing key features like bathroom visits and respiratory rates to alert healthcare providers for timely intervention.
View Article and Find Full Text PDF

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

View Article and Find Full Text PDF

We report on single-molecule nanopore sensing combined with position-encoded DNA molecular probes, with chemistry tuned to simultaneously identify various antigen proteins and multiple RNA gene fragments of SARS-CoV-2 with high sensitivity and selectivity. We show that this sensing strategy can directly detect spike (S) and nucleocapsid (N) proteins in unprocessed human saliva. Moreover, our approach enables the identification of RNA fragments from patient samples using nasal/throat swabs, enabling the identification of critical mutations such as D614G, G446S, or Y144del among viral variants.

View Article and Find Full Text PDF

While recent advances in cryo-EM, coupled with single particle analysis, have the potential to allow structure determination in a near-native state from vanishingly few individual particles, this vision has yet to be realised in practise. Requirements for particle numbers that currently far exceed the theoretical lower limits, challenges with the practicalities of achieving high concentrations for difficult-to-produce samples, and inadequate sample-dependent imaging conditions, all result in significant bottlenecks preventing routine structure determination using cryo-EM. Therefore, considerable efforts are being made to circumvent these bottlenecks by developing affinity purification of samples on-grid; at once obviating the need to produce large amounts of protein, as well as more directly controlling the variable, and sample-dependent, process of grid preparation.

View Article and Find Full Text PDF

Gram-negative bacteria naturally shed lipid vesicles, which contain complex molecular cargoes, from their outer membrane. These outer membrane vesicles (OMVs) have important biological functions relating to microbial stress responses, microbiome regulation, and host-pathogen interactions. OMVs are also attractive vehicles for delivering drugs, vaccines, and other therapeutic agents because of their ability to interact with host cells and their natural immunogenic properties.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The EV research community has rapidly expanded in recent years and is leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health.

View Article and Find Full Text PDF

Background: Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission.

Methods: In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.

View Article and Find Full Text PDF

In synthetic biology, biosensors are routinely coupled with a gene expression system for detecting small molecules and physical signals. We reveal a fluorescent complex, based on the interaction of an coli double bond reductase (CurA), as a detection unit with its substrate curcumin-we call this a direct protein (DiPro) biosensor. Using a cell-free synthetic biology approach, we use the CurA DiPro biosensor to fine tune 10 reaction parameters (cofactor, substrate, and enzyme levels) for cell-free curcumin biosynthesis, assisted through acoustic liquid handling robotics.

View Article and Find Full Text PDF

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry.

View Article and Find Full Text PDF

Suitable controls are integral for the validation and continued quality assurance of diagnostic workflows. Plasmids, DNA, or transcribed RNA are often used to validate novel diagnostic workflows, however, they are poorly representative of clinical samples. RNA phage virus-like particles (VLPs) packaged with exogenous RNA have been used in clinical diagnostics as workflow controls, serving as surrogates for infectious viral particles.

View Article and Find Full Text PDF

Standardized deoxyribonucleic acid (DNA) assembly methods utilizing modular components provide a powerful framework to explore designs and iterate through Design-Build-Test-Learn cycles. Biopart Assembly Standard for Idempotent Cloning (BASIC) DNA assembly uses modular parts and linkers, is highly accurate, easy to automate, free for academic and commercial use and enables hierarchical assemblies through an idempotent format. These features enable applications including pathway engineering, ribosome binding site (RBS) tuning, fusion protein engineering and multiplexed guide ribonucleic acid (RNA) expression.

View Article and Find Full Text PDF

Point-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection-such as multiplexed detection for viral variant surveillance-may limit their widespread adoption. Herein, we developed a robust multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)-including globally dominant VOCs Delta (B.1.

View Article and Find Full Text PDF

bacteria are a major microbial source of natural products, which are encoded within so-called biosynthetic gene clusters (BGCs). This highlight discusses the emergence of native s cell-free systems as a new tool to accelerate the study of the fundamental chemistry and biology of natural product biosynthesis from these bacteria. Cell-free systems provide a prototyping platform to study plug-and-play reactions in microscale reactions.

View Article and Find Full Text PDF

Synthetic networks require complex intertwined genetic regulation often relying on transcriptional activation or repression of target genes. CRISPRi-based transcription factors facilitate the programmable modulation of endogenous or synthetic promoter activity and the process can be optimised by using software to select appropriate gRNAs and limit non-specific gene modulation. Here, we develop a computational software pipeline, gDesigner, that enables the automated selection of orthogonal gRNAs with minimized off-target effects and promoter crosstalk.

View Article and Find Full Text PDF

Background: Assessing transmission of SARS-CoV-2 by children in schools is of crucial importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shedding into air and onto fomites in both settings.

Methods: We did a prospective cohort and environmental sampling study in London, UK in eight schools.

View Article and Find Full Text PDF

Background: Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting.

View Article and Find Full Text PDF

Demand for accurate SARS-CoV-2 diagnostics is high. Most samples in the UK are collected in the community and rely on the postal service for delivery to the laboratories. The current recommendation remains that swabs should be collected in Viral Transport Media (VTM) and transported with a cold chain to the laboratory for RNA extraction and RT-qPCR.

View Article and Find Full Text PDF

Schistosomiasis, also known as bilharzia or snail fever, is a debilitating neglected tropical disease (NTD), caused by parasitic trematode flatworms of the genus Schistosoma, that has an annual mortality rate of 280,000 people in sub-Saharan Africa alone. Schistosomiasis is transmitted via contact with water bodies that are home to the intermediate host snail which shed the infective cercariae into the water. Schistosome lifecycles are complex, and while not all schistosome species cause human disease, endemic regions also typically feature animal-infecting schistosomes that can have broader economic and/or food security implications.

View Article and Find Full Text PDF

A Global Forum on Synthetic Biology is needed to engage policymakers with practitioners across borders at the highest level. The international community needs a global confidence-building measure focused on discussing policy futures for the age of engineering biology.

View Article and Find Full Text PDF

Accurate, reliable, and cost-effective immunosensors are clinically important for the early diagnosis and monitoring of progressive diseases, and multiplexed sensing is a promising strategy for the next generation of diagnostics. This strategy allows for the simultaneous detection and quantification of multiple biomarkers with significantly enhanced reproducibility and reliability, whilst requiring smaller sample volumes, fewer materials, and shorter average analysis time for individual biomarkers than individual tests. In this opinionated review, we compare different techniques for the development of multiplexed immunosensors.

View Article and Find Full Text PDF