Exposure of Chinese cabbage (Brassica pekinensis) to enhanced Cu(2+) concentrations (1-10 microM) resulted in leaf chlorosis, a loss of photosynthetic capacity and lower biomass production at > or = 5 microM. The decrease in pigment content was likely not the consequence of degradation, but due to hindered chloroplast development upon Cu exposure. The Cu content of the root increased with the Cu(2+) concentration (up to 40-fold), though only a minor proportion (4%) was transferred to the shoot.
View Article and Find Full Text PDFBoth activity and expression of sulfate transporters and APS reductase in plants are modulated by the sulfur status of the plant. To examine the regulatory mechanisms in curly kale (Brassica oleracea L.), the sulfate supply was manipulated by the transfer of seedlings to sulfate-deprived conditions, which resulted in an up to 3-fold increase in the sulfate uptake capacity by the root, accompanied by an induction of transcript abundances of the Group 1 and 4 sulfate transporters in root and shoot.
View Article and Find Full Text PDFFunct Plant Biol
June 2008
The activity and expression of sulfate transporters and adenosine 5'-phosphosulfate (APS) reductase (APR) in plants are modulated by the plant sulfur status and the demand for growth. To elucidate regulatory mechanisms in Chinese cabbage [Brassica pekinensis (Lour.) Rupr.
View Article and Find Full Text PDFBackground And Aims: Plant shoots form a sink for NH3, and are able to utilize it as a source of N. NH3 was used as a tool to investigate the interaction between foliar N uptake and root N uptake. To what extent NH3 can contribute to the N budget of the plant or can be regarded as a toxin, was investigated in relation to its concentration and the N supply in the root environment.
View Article and Find Full Text PDF