Metabolic Syndrome (MetS) is highly prevalent and has considerable public health impact, but its underlying genetic factors remain elusive. To identify gene networks involved in MetS, we conducted whole-genome expression and genotype profiling on abdominal (ABD) and gluteal (GLU) adipose tissue, and whole blood (WB), from 29 MetS cases and 44 controls. Co-expression network analysis for each tissue independently identified nine, six, and zero MetS-associated modules of coexpressed genes in ABD, GLU, and WB, respectively.
View Article and Find Full Text PDFThe integrated analysis of genotypic and expression data for association with complex traits could identify novel genetic pathways involved in complex traits. We profiled 19,573 expression probes in Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) from 299 twins and correlated these with 44 quantitative traits (QTs). For 939 expressed probes correlating with more than one QT, we investigated the presence of eQTL associations in three datasets of 57 CEU HapMap founders and 86 unrelated twins.
View Article and Find Full Text PDFThis protocol describes how to perform basic statistical analysis in a population-based genetic association case-control study. The steps described involve the (i) appropriate selection of measures of association and relevance of disease models; (ii) appropriate selection of tests of association; (iii) visualization and interpretation of results; (iv) consideration of appropriate methods to control for multiple testing; and (v) replication strategies. Assuming no previous experience with software such as PLINK, R or Haploview, we describe how to use these popular tools for handling single-nucleotide polymorphism data in order to carry out tests of association and visualize and interpret results.
View Article and Find Full Text PDFThis protocol details the steps for data quality assessment and control that are typically carried out during case-control association studies. The steps described involve the identification and removal of DNA samples and markers that introduce bias. These critical steps are paramount to the success of a case-control study and are necessary before statistically testing for association.
View Article and Find Full Text PDFLeprosy is an infectious disease caused by the obligate intracellular pathogen Mycobacterium leprae and remains endemic in many parts of the world. Despite several major studies on susceptibility to leprosy, few genomic loci have been replicated independently. We have conducted an association analysis of more than 1,500 individuals from different case-control and family studies, and observed consistent associations between genetic variants in both TLR1 and the HLA-DRB1/DQA1 regions with susceptibility to leprosy (TLR1 I602S, case-control P = 5.
View Article and Find Full Text PDFBackground: Readily accessible samples such as peripheral blood or cell lines are increasingly being used in large cohorts to characterise gene expression differences between a patient group and healthy controls. However, cell and RNA isolation procedures and the variety of cell types that make up whole blood can affect gene expression measurements. We therefore systematically investigated global gene expression profiles in peripheral blood from six individuals collected during two visits by comparing five of the following cell and RNA isolation methods: whole blood (PAXgene), peripheral blood mononuclear cells (PBMCs), lymphoblastoid cell lines (LCLs), CD19 and CD20 specific B-cell subsets.
View Article and Find Full Text PDFWe compare and contrast case-only designs for detecting gene x gene (G x G) interaction in rheumatoid arthritis (RA) using the genome-wide data provided by Genetic Analysis Workshop 16 Problem 1. Logistic as well as novel multinomial and proportional odds models that do not depend on the specification of additive or dominant models for susceptibility loci were applied to the case-only sample. We identified 519 significant interactions (p < 1 x 10-4 in at least one test).
View Article and Find Full Text PDFAssociation studies can focus on candidate gene(s), a particular genomic region, or adopt a genome-wide association approach, each of which has implications for marker selection. The strategy for marker selection will affect the statistical power of the study to detect a disease association and is a crucial element of study design. The abundant single nucleotide polymorphisms (SNPs) are the markers of choice in genetic case-control association studies.
View Article and Find Full Text PDFGenotype imputation is potentially a zero-cost method for bridging gaps in coverage and power between genotyping platforms. Here, we quantify these gains in power and coverage by using 1,376 population controls that are from the 1958 British Birth Cohort and were genotyped by the Wellcome Trust Case-Control Consortium with the Illumina HumanHap 550 and Affymetrix SNP Array 5.0 platforms.
View Article and Find Full Text PDF