Recent biotechnological advancements in protein production and development of biomimetic spinning procedures make artificial spider silk a promising alternative to petroleum-based fibers. To enhance the competitiveness of artificial silk in terms of mechanical properties, refining the spinning techniques is imperative. One potential strategy involves the integration of post-spin stretching, known to improve fiber strength and stiffness while potentially offering additional advantages.
View Article and Find Full Text PDFThe development of recyclable crosslinked thermosetting fibres is a challenging research topic. In the present work, we have designed and synthesized polyurethane fibres from fructose-derived 5-chloromethylfurfural (CMF) and lignin-derived monomeric phenols. The greenhouse gas emissions associated with the production of CMF showed comparable results to that of 5-hydroxymethylfurfural (HMF), a high potential sugar-based platform molecule.
View Article and Find Full Text PDFSilk fibers derived from the cocoon of silk moths and the wide range of silks produced by spiders exhibit an array of features, such as extraordinary tensile strength, elasticity, and adhesive properties. The functional features and mechanical properties can be derived from the structural composition and organization of the silk fibers. Artificial recombinant protein fibers based on engineered spider silk proteins have been successfully made previously and represent a promising way towards the large-scale production of fibers with predesigned features.
View Article and Find Full Text PDFThe modulation of reaction kinetics with horseradish peroxidase (HRP)-catalyzed cross-linking of proteins remains a useful strategy to modulate hydrogel formation. Here, we demonstrate that the presence of positively charged lysines in silk-elastin-like polymers impacts the thermal transition temperature of these proteins, while the location in the primary sequence modulates the reactivity of the tyrosines. The positively charged lysine side chains decreased π-π interactions among the tyrosines and reduced the rate of formation and number of HRP-mediated dityrosine bonds, dependent on the proximity of the charged group to the tyrosine.
View Article and Find Full Text PDFAMPK activated protein kinase (AMPK), a master regulator of energy homeostasis, is activated in response to an energy shortage imposed by physical activity and caloric restriction. We here report on the identification of PAN-AMPK activator O304, which - in diet-induced obese mice - increased glucose uptake in skeletal muscle, reduced β cell stress, and promoted β cell rest. Accordingly, O304 reduced fasting plasma glucose levels and homeostasis model assessment of insulin resistance (HOMA-IR) in a proof-of-concept phase IIa clinical trial in type 2 diabetes (T2D) patients on Metformin.
View Article and Find Full Text PDFHerein we utilize insulin to prepare amyloid based chiral helices with either right or left handed helicity. We demonstrate that the helices can be utilized as structural templates for the conducting polymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S). The chirality of the helical assembly is transferred to PEDOT-S as demonstrated by polarized optical microscopy (POM) and Circular Dichroism (CD).
View Article and Find Full Text PDFFollowing stroke, complete cellular death in the ischemic brain area may ensue, with remaining brain areas undergoing tissue remodelling to various degrees. Experience-dependent brain plasticity exerted through an enriched environment (EE) promotes remodelling after central nervous system injury, such as stroke. Post-stroke tissue reorganization is modulated by growth inhibitory molecules differentially expressed within the ischemic hemisphere, like chondroitin sulfate proteoglycans found in perineuronal nets (PNNs).
View Article and Find Full Text PDFMany proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process.
View Article and Find Full Text PDFHepatosteatosis is associated with the development of both hepatic insulin resistance and Type 2 diabetes. Hepatic expression of Cd36, a fatty acid transporter, is enhanced in obese and diabetic murine models and human nonalcoholic fatty liver disease, and thus it correlates with hyperinsulinemia, steatosis, and insulin resistance. Here, we have explored the effect of hyperinsulinemia on hepatic Cd36 expression, development of hepatosteatosis, insulin resistance, and dysglycemia.
View Article and Find Full Text PDFHerein, we demonstrate that it is possible to rapidly screen hydrophobic fluorescent aromatic molecules with regards to their properties as amyloid probes. By grinding the hydrophobic molecule with the amyloidogenic protein insulin, we obtained a water-soluble composite material. When this material is dissolved and exposed to conditions promoting amyloid formation, the protein aggregates into amyloid fibrils incorporating the hydrophobic molecule.
View Article and Find Full Text PDFGenome-wide association studies have identified several type 2 diabetes (T2D) risk loci linked to impaired β-cell function. The identity and function of the causal genes in these susceptibility loci remain, however, elusive. The HHEX/IDE T2D locus is associated with decreased insulin secretion in response to oral glucose stimulation in humans.
View Article and Find Full Text PDF