Publications by authors named "Fredric J Burns"

This study uses acute doses of three test radiations, [Ar ions (L = 125 keVμ), Ne ions (L = 25 keVμ) and electron radiation] to examine a potential quantitative link between rat skin cancer induction and gamma-H2AX foci in rat keratinocytes exposed in vitro to radiations with comparable L values. Theory provided a testable link between cancer yield and gamma-H2AX foci yields: YCa(D,L)rat = (NF)2YAX(D,L)keratinocyte (eqn 1), where YCa(D,L) is cancers(rat) at 1.0 y, YAX(D,L) is in vitro gamma-H2AX foci(keratinocyte) , D is radiation dose, L is linear energy transfer, N is irradiated keratinocytes in vivo, and F is the error rate of end joining.

View Article and Find Full Text PDF

Understanding how oral administration of aroma terpenes can prevent sunburn or skin cancer in mice could lead to more effective and safer ways of blocking sun damage to human skin. To establish sunburn preventive activity, female Skh-1 mice were given oral β-damascenone followed by irradiation with UVR from fluorescent 'sunlamps'. The following endpoints were evaluated versus controls at various times between 1 and 12 days after the terpene: whole genome gene expression and in situ immunohistochemistry of PCNA, keratin 10, filaggrin and caspase 14, and sunburn was evaluated at 5 days.

View Article and Find Full Text PDF

A summary is provided of presentations and discussions at the NASA Radiation Biomarker Workshop held September 27-28, 2007 at NASA Ames Research Center in Mountain View, CA. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including those exposed during long-duration space travel.

View Article and Find Full Text PDF

Background: Hairless mice that ingested arsenite in drinking water exhibited more than a 5-fold enhancement of ultraviolet radiation (UVR) carcinogenesis, whereas arsenite alone was carcinogenically inactive. Dietary organoselenium blocked the cancer enhancement effect of arsenic but not cancer induction by UVR.

Objective: In this study we sought to explain selenium blockage of As enhancement by establishing the extent that As and Se tissue distributions are coincident or divergent.

View Article and Find Full Text PDF

The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1 mice was investigated. The dietary vitamin E and selenomethionine were tested for prevention of chromium-enhanced skin carcinogenesis. The mice were exposed to UVR (1.

View Article and Find Full Text PDF

The purpose of the present work was to examine gene expression patterns in a rat keratinocyte line exposed to a (56)Fe ion beam. The cells were exposed to 1.01 geV/nucleon (56)Fe ions generated by the NASA Space Radiation Laboratory facility.

View Article and Find Full Text PDF

Quantitative cancer incidence data exist for various laboratory animal models, but little of this information is usable for estimating human risks, primarily because of uncertainties about possible mechanistic differences among species. Acceptance and utilization of animal data for human risk assessment will require a much better understanding of the comparative underlying mechanisms than now exists. A dual-lesion, radiation-track model in rat skin has proven to be consistent with tumor induction data with respect to acute radiation doses ranging from 0.

View Article and Find Full Text PDF

The purpose of the present work was to examine gene expression patterns in rat skin exposed to a beam of (56)Fe ions, a surrogate for the high-energy, heavy-ion galactic radiation background, as a basis for obtaining a better understanding of the possible mechanism(s) behind the radioprotective activity of vitamin A. A 2 x 4-cm rectangle of dorsal rat skin was exposed to 1.01 GeV/nucleon (56)Fe ions generated by the Alternating Gradient Synchrotron at Brookhaven National Laboratory.

View Article and Find Full Text PDF

Carcinogenic effects of ionizing radiation and benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), a major metabolite of benzo[a]pyrene (B[a]P), have been well demonstrated both in vitro and in vivo. Two-stage carcinogenesis results indicate that mouse skin is highly susceptible to both ionizing radiation and benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), a major metabolite of benzo[a]pyrene (B[a]P). It is believed that signaling pathways leading to the regulation of gene expression play a significant role in the development of skin cancers.

View Article and Find Full Text PDF

Our laboratory has shown that arsenite markedly increased the cancer rate caused by solar-simulation ultraviolet radiation (UVR) in the hairless mouse skin model. In the present study, we investigated how arsenite affected DNA photodamage repair and apoptosis after solar-simulation UVR in the mouse keratinocyte cell line 291.03C.

View Article and Find Full Text PDF

Arsenic-induced carcinogenesis is a worldwide problem for which there is currently limited means for control. Recently, we showed that arsenite in drinking water greatly potentiates solar ultraviolet radiation (UVR) induced skin cancer in mice, at concentrations as low as 1.25 mg/l.

View Article and Find Full Text PDF

Inorganic arsenic (arsenite and arsenate) in drinking water has been associated with skin cancers in several countries such as Taiwan, Chile, Argentina, Bangladesh, and Mexico. This association has not been established in the United States. In addition, inorganic arsenic alone in drinking water does not cause skin cancers in animals.

View Article and Find Full Text PDF

The present study was designed to establish the form of the dose-response relationship for dietary sodium arsenite as a co-carcinogen with ultraviolet radiation (UVR) in a mouse skin model. Hairless mice (strain Skh1) were fed sodium arsenite continuously in drinking water starting at 21 days of age at concentrations of 0.0, 1.

View Article and Find Full Text PDF

Current models of radiation carcinogenesis generally assume that the DNA is damaged in a variety of ways by the radiation and that subsequent cell divisions contribute to the conversion of the damage to heritable mutations. Cancer may seem complex and intractable, but its complexity provides multiple opportunities for preventive interventions. Mitotic inhibitors are among the strongest cancer preventive agents, not only slowing the growth rate of preneoplasias but also increasing the fidelity of DNA repair processes.

View Article and Find Full Text PDF

Although epidemiologic evidence shows an association between inorganic arsenic in drinking water and increased risk of skin, lung, and bladder cancers, no animal model for arsenic carcinogenesis has been successful. This lack has hindered mechanistic studies of arsenic carcinogenesis. Previously, we and others found that low concentrations (< or =5 microm) of arsenite (the likely environmental carcinogen), which are not mutagenic, can enhance the mutagenicity of other agents, including ultraviolet radiation (UVR) and alkylating agents.

View Article and Find Full Text PDF