Methods Mol Biol
February 2009
Protein-thiol oxidation subserves multiple biological functions, from enzymatic catalysis to protein oxidative folding, protein trafficking, reactive oxygen (ROS) and nitrogen (RNS) species sensing and signaling and, more generally, protein redox regulation. Protein-thiol oxidation may also constitute a sequel of ROS and RNS toxicity. Accurate and robust methods aimed at monitoring the in vivo redox state of cysteine residues are thus warranted.
View Article and Find Full Text PDFBy its ability to engage in a variety of redox reactions and coordinating metals, cysteine serves as a key residue in mediating enzymatic catalysis, protein oxidative folding and trafficking, and redox signaling. The thiol redox system, which consists of the glutathione and thioredoxin pathways, uses the cysteine residue to catalyze thiol-disulfide exchange reactions, thereby controlling the redox state of cytoplasmic cysteine residues and regulating the biological functions it subserves. Here, we consider the thiol redox systems of Escherichia coli and Saccharomyces cerevisiae, emphasizing the role of genetic approaches in the understanding of the cellular functions of these systems.
View Article and Find Full Text PDFProtein thiol oxidation subserves important biological functions and constitutes a sequel of reactive oxygen species toxicity. We developed two distinct thiol-labeling approaches to identify oxidized cytoplasmic protein thiols in Saccharomyces cerevisiae. Inone approach, we used N-(6-(biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide to purify oxidized protein thiols, and in the other, we used N-[(14)C]ethylmaleimide to quantify this oxidation.
View Article and Find Full Text PDFThe Yap1 transcription factor regulates yeast responses to H2O2 and to several unrelated chemicals and metals. Activation by H2O2 involves Yap1 Cys303-Cys598 intra-molecular disulfide bond formation directed by the H2O2 sensor Orp1/Gpx3. We show here that the electrophile N-ethylmaleimide activates Yap1 by covalent modification of Yap1 C-terminal Cys598, Cys620, and Cys629, in an Orp1 and Yap1-oxidation-independent way, thus establishing an alternate and distinct mode of Yap1 activation.
View Article and Find Full Text PDF