The enhanced CO2 release of illuminated leaves transferred into darkness, termed "light enhanced dark respiration (LEDR)", is often associated with an increase in the carbon isotope ratio of the respired CO2 (δ(13)CLEDR). The latter has been hypothesized to result from different respiratory substrates and decarboxylation reactions in various metabolic pathways, which are poorly understood so far. To provide a better insight into the underlying metabolic processes of δ(13)CLEDR, we fed position-specific (13)C-labeled malate and pyruvate via the xylem stream to leaves of species with high and low δ(13)CLEDR values (Halimium halimifolium and Oxalis triangularis, respectively).
View Article and Find Full Text PDFThe allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. In the present study, we investigated the regulation of C uptake and allocation and their adjustments during plant growth. We induced different allocation strategies in the Mediterranean shrub Halimium halimifolium L.
View Article and Find Full Text PDFOrgans of C3 plants differ in their C isotopic signature (δ13C). In general, leaves are 13C-depleted relative to other organs. To investigate the development of spatial δ13C patterns, we induced different C allocation strategies by reducing light and nutrient availability for 12 months in the Mediterranean shrub Halimium halimifolium L.
View Article and Find Full Text PDFAcetylation of plant metabolites fundamentally changes their volatility, solubility and activity as semiochemicals. Here we present a new technique termed dynamic (13) C-pulse chasing to track the fate of C1-3 carbon atoms of pyruvate into the biosynthesis and emission of methyl acetate (MA) and CO2 . (13) C-labelling of MA and CO2 branch emissions respond within minutes to changes in (13) C-positionally labelled pyruvate solutions fed through the transpiration stream.
View Article and Find Full Text PDFRecent advances in understanding the metabolic origin and the temporal dynamics in delta(13)C of dark-respired CO(2) (delta(13)C(res)) have led to an increasing awareness of the importance of plant isotopic fractionation in respiratory processes. Pronounced dynamics in delta(13)C(res) have been observed in a number of species and three main hypotheses have been proposed: first, diurnal changes in delta(13)C of respiratory substrates; second, post-photosynthetic discrimination in respiratory pathways; and third, dynamic decarboxylation of enriched carbon pools during the post-illumination respiration period. Since different functional groups exhibit distinct diurnal patterns in delta(13)C(res) (ranging from 0 to 10 per thousand diurnal increase), we explored these hypotheses for different ecotypes and environmental (i.
View Article and Find Full Text PDFThe first broad species survey of diurnal variation in carbon (C) isotope signatures of leaf dark-respired CO(2) (delta(13)C(res)) is presented here and functional differences and diurnal dynamics are linked to fractionation in different respiratory pathways, based on (13)C-labelling experiments. delta(13)C(res) was analysed with a rapid in-tube incubation technique in 16 species. A large diurnal increase in delta(13)C(res) (4-8 per thousand) occurred in evergreen, slow-growing and aromatic species and correlated significantly with cumulative photosynthesis, whereas no variation occurred in herbaceous, fast-growing plants or temperate trees.
View Article and Find Full Text PDF